Patents by Inventor Chi-Hsi Wu

Chi-Hsi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10867965
    Abstract: An embodiment is a method including bonding a first die to a first side of an interposer using first electrical connectors, bonding a second die to first side of the interposer using second electrical connectors, attaching a first dummy die to the first side of the interposer adjacent the second die, encapsulating the first die, the second die, and the first dummy die with an encapsulant, and singulating the interposer and the first dummy die to form a package structure.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ching Shih, Chi-Hsi Wu, Chen-Hua Yu, Chih-Wei Wu, Jing-Cheng Lin, Pu Wang, Szu-Wei Lu
  • Patent number: 10866373
    Abstract: A structure including a photonic integrated circuit die, an electric integrated circuit die, a semiconductor dam, and an insulating encapsulant is provided. The photonic integrated circuit die includes an optical input/output portion and a groove located in proximity of the optical input/output portion, wherein the groove is adapted for lateral insertion of at least one optical fiber. The electric integrated circuit die is disposed over and electrically connected to the photonic integrated circuit die. The semiconductor dam is disposed over the photonic integrated circuit die. The insulating encapsulant is disposed over the photonic integrated circuit die and laterally encapsulates the electric integrated circuit die and the semiconductor dam.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hsing-Kuo Hsia, Sung-Hui Huang, Kuan-Yu Huang, Kuo-Chiang Ting, Shang-Yun Hou, Chi-Hsi Wu
  • Patent number: 10868166
    Abstract: A semiconductor device is formed by a multi-step etching process that produces trench openings in a silicon substrate immediately adjacent transistor gate structures formed over the substrate surface. The multi-step etching process is a Br-based etching operation with one step including nitrogen and a further step deficient of nitrogen. The etching process does not attack the transistor structure and forms the openings. The openings are bounded by upper surfaces that extend downwardly from the substrate surface and are substantially vertical, and lower surfaces that bulge outwardly from the upper vertical sections and undercut the transistor structure. The openings may be filled with a suitable source/drain material to produce SSD transistors with desirable Idsat characteristics.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ta-Wei Kao, Shiang-Bau Wang, Ming-Jie Huang, Chi-Hsi Wu, Shu-Yuan Ku
  • Patent number: 10867954
    Abstract: A method includes bonding a first device die and a second device die to an interconnect die. The interconnect die includes a first portion over and bonded to the first device die, and a second portion over and bonded to the second device die. The interconnect die electrically connects the first device die to the second device die. The method further includes encapsulating the interconnect die in an encapsulating material, and forming a plurality of redistribution lines over the interconnect die.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chiang Ting, Chi-Hsi Wu, Shang-Yun Hou, Tu-Hao Yu, Chia-Hao Hsu, Ting-Yu Yeh
  • Patent number: 10867900
    Abstract: A structure includes a metal pad, a passivation layer having a portion covering edge portions of the metal pad, and a dummy metal plate over the passivation layer. The dummy metal plate has a plurality of through-openings therein. The dummy metal plate has a zigzagged edge. A dielectric layer has a first portion overlying the dummy metal plate, second portions filling the first plurality of through-openings, and a third portion contacting the first zigzagged edge.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Hsieh, Hsien-Wei Chen, Chi-Hsi Wu, Chen-Hua Yu, Der-Chyang Yeh, Li-Han Hsu, Wei-Cheng Wu
  • Publication number: 20200373266
    Abstract: An embodiment is a method including forming a first passive device in a first wafer, forming a first dielectric layer over a first side of the first wafer, forming a first plurality of bond pads in the first dielectric layer, planarizing the first dielectric layer and the first plurality of bond pads to level top surfaces of the first dielectric layer and the first plurality of bond pads with each other, hybrid bonding a first device die to the first dielectric layer and at least some of the first plurality of bond pads, and encapsulating the first device die in a first encapsulant.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: Chi-Hsi Wu, Der-Chyang Yeh, Hsien-Wei Chen, Jie Chen
  • Patent number: 10825780
    Abstract: A method includes forming a first semiconductor device, wherein the first semiconductor device includes a top surface and a bottom surface, and wherein the first semiconductor device includes a metal layer having an exposed first surface. The method also includes forming a Electromagnetic Interference (EMI) layer over the top surface and sidewalls of the first semiconductor device, wherein the EMI layer electrically contacts the exposed first surface of the metal layer. The method also includes forming a molding compound over the EMI layer.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 3, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Hsi Wu, Hsien-Wei Chen, Li-Hsien Huang, Tien-Chung Yang
  • Publication number: 20200343193
    Abstract: An embodiment is a structure including a first die having an active surface with a first center point, a molding compound at least laterally encapsulating the first die, and a first redistribution layer (RDL) including metallization patterns extending over the first die and the molding compound. A first portion of the metallization patterns of the first RDL extending over a first portion of a boundary of the first die to the molding compound, the first portion of the metallization patterns not extending parallel to a first line, the first line extending from the first center point of the first die to the first portion of the boundary of the first die.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Cheng-Hsien Hsieh, Li-Han Hsu, Wei-Cheng Wu, Hsien-Wei Chen, Der-Chyang Yeh, Chi-Hsi Wu, Chen-Hua Yu, Tsung-Shu Lin
  • Patent number: 10811394
    Abstract: A method includes attaching a first-level device die to a dummy die, encapsulating the first-level device die in a first encapsulating material, forming through-vias over and electrically coupled to the first-level device die, attaching a second-level device die over the first-level device die, and encapsulating the through-vias and the second-level device die in a second encapsulating material. Redistribution lines are formed over and electrically coupled to the through-vias and the second-level device die. The dummy die, the first-level device die, the first encapsulating material, the second-level device die, and the second encapsulating material form parts of a composite wafer.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Wei-Yu Chen, Ying-Ju Chen, Tsung-Shu Lin, Chin-Chuan Chang, Hsien-Wei Chen, Wei-Cheng Wu, Li-Hsien Huang, Chi-Hsi Wu, Der-Chyang Yeh
  • Patent number: 10796927
    Abstract: A semiconductor device and method for forming the semiconductor device is provided. The semiconductor device includes an integrated circuit having through vias adjacent to the integrated circuit die, wherein a molding compound is interposed between the integrated circuit die and the through vias. The through vias have a projection extending through a patterned layer, and the through vias may be offset from a surface of the patterned layer. The recess may be formed by selectively removing a seed layer used to form the through vias.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Chen-Hua Yu, Chi-Hsi Wu, Der-Chyang Yeh, An-Jhih Su, Wei-Yu Chen
  • Patent number: 10784207
    Abstract: A multi-stacked package-on-package structure includes a method. The method includes: adhering a first die and a plurality of second dies to a substrate, the first die having a different function from each of the plurality of second dies; attaching a passive device over the first die; encapsulating the first die, the plurality of second dies, and the passive device; and forming a first redistribution structure over the passive device, the first die, and the plurality of second dies, the passive device connecting the first die to the first redistribution structure.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: September 22, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Der-Chyang Yeh, Ming Shih Yeh, Wei-Cheng Wu
  • Patent number: 10770365
    Abstract: An embodiment is a method including: attaching a first die to a first side of a first component using first electrical connectors, attaching a first side of a second die to first side of the first component using second electrical connectors, attaching a dummy die to the first side of the first component in a scribe line region of the first component, adhering a cover structure to a second side of the second die, and singulating the first component and the dummy die to form a package structure.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hsien-Pin Hu, Jing-Cheng Lin, Szu-Wei Lu, Shang-Yun Hou, Wen-Hsin Wei, Ying-Ching Shih, Chi-Hsi Wu
  • Patent number: 10746923
    Abstract: A method includes forming silicon waveguide sections in a first oxide layer over a substrate, the first oxide layer disposed on the substrate, forming a routing structure over the first oxide layer, the routing structure including one or more insulating layers and one or more conductive features in the one or more insulating layers, recessing regions of the routing structure, forming nitride waveguide sections in the recessed regions of the routing structure, wherein the nitride waveguide sections extend over the silicon waveguide sections, forming a second oxide layer over the nitride waveguide sections, and attaching semiconductor dies to the routing structure, the dies electrically connected to the conductive features.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hsing-Kuo Hsia, Kuo-Chiang Ting, Pin-Tso Lin, Sung-Hui Huang, Shang-Yun Hou, Chi-Hsi Wu
  • Publication number: 20200258760
    Abstract: A semiconductor device includes a first die extending through a molding compound layer, a first dummy die having a bottom embedded in the molding compound layer, wherein a height of the first die is greater than a height of the first dummy die, and an interconnect structure over the molding compound layer, wherein a first metal feature of the interconnect structure is electrically connected to the first die and a second metal feature of the interconnect structure is over the first dummy die and extends over a sidewall of the first dummy die.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Der-Chyang Yeh, Hsien-Wei Chen, Wei-Yu Chen
  • Patent number: 10741512
    Abstract: An embodiment is a method including forming a first passive device in a first wafer, forming a first dielectric layer over a first side of the first wafer, forming a first plurality of bond pads in the first dielectric layer, planarizing the first dielectric layer and the first plurality of bond pads to level top surfaces of the first dielectric layer and the first plurality of bond pads with each other, hybrid bonding a first device die to the first dielectric layer and at least some of the first plurality of bond pads, and encapsulating the first device die in a first encapsulant.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Hsi Wu, Der-Chyang Yeh, Hsien-Wei Chen, Jie Chen
  • Publication number: 20200251380
    Abstract: A method includes forming a metal layer extending into openings of a dielectric layer to contact a first metal pad and a second metal pad, and bonding a bottom terminal of a component device to the metal layer. The metal layer has a first portion directly underlying and bonded to the component device. A raised via is formed on the metal layer, and the metal layer has a second portion directly underlying the raised via. The metal layer is etched to separate the first portion and the second portion of the metal layer from each other. The method further includes coating the raised via and the component device in a dielectric layer, revealing the raised via and a top terminal of the component device, and forming a redistribution line connecting the raised via to the top terminal.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Der-Chyang Yeh, Ming Shih Yeh, Jing-Cheng Lin, Hung-Jui Kuo
  • Publication number: 20200251398
    Abstract: An integrated circuit package and a method of fabrication of the same are provided. An opening is formed in a substrate. An embedded heat dissipation feature (eHDF) is placed in the opening in the substrate and is attached to the substrate using a high thermal conductivity adhesive. One or more bonded chips are attached to the substrate using a flip-chip method. The eHDF is thermally attached to one or more hot spots of the bonded chips. In some embodiments, the eHDF may comprise multiple physically disconnected portions. In other embodiments, the eHDF may have a perforated structure.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Wensen Hung, Szu-Po Huang, Hsiang-Fan Lee, Kim Hong Chen, Chi-Hsi Wu, Shin-Puu Jeng
  • Publication number: 20200251456
    Abstract: A package structure and the manufacturing method thereof are provided. The package structure includes a first package including at least one first semiconductor die encapsulated in an insulating encapsulation and through insulator vias electrically connected to the at least one first semiconductor die, a second package including at least one second semiconductor die and conductive pads electrically connected to the at least one second semiconductor die, and solder joints located between the first package and the second package. The through insulator vias are encapsulated in the insulating encapsulation. The first package and the second package are electrically connected through the solder joints. A maximum size of the solder joints is greater than a maximum size of the through insulator vias measuring along a horizontal direction, and is greater than or substantially equal to a maximum size of the conductive pads measuring along the horizontal direction.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yu Chen, An-Jhih Su, Chi-Hsi Wu, Der-Chyang Yeh, Li-Hsien Huang, Po-Hao Tsai, Ming-Shih Yeh, Ta-Wei Liu
  • Publication number: 20200243442
    Abstract: A method for forming a via in a semiconductor device and a semiconductor device including the via are disclosed. In an embodiment, the method may include bonding a first terminal and a second terminal of a first substrate to a third terminal and a fourth terminal of a second substrate; separating the first substrate to form a first component device and a second component device; forming a gap fill material over the first component device, the second component device, and the second substrate; forming a conductive via extending from a top surface of the gap fill material to a fifth terminal of the second substrate; and forming a top terminal over a top surface of the first component device, the top terminal connecting the first component device to the fifth terminal of the second substrate through the conductive via.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Wen-Chih Chiou, Tsang-Jiuh Wu, Der-Chyang Yeh, Ming Shih Yeh
  • Publication number: 20200243435
    Abstract: A semiconductor device includes a substrate, a first redistribution layer (RDL) over a first side of the substrate, one or more semiconductor dies over and electrically coupled to the first RDL, and an encapsulant over the first RDL and around the one or more semiconductor dies. The semiconductor device also includes connectors attached to a second side of the substrate opposing the first side, the connectors being electrically coupled to the first RDL. The semiconductor device further includes a polymer layer on the second side of the substrate, the connectors protruding from the polymer layer above a first surface of the polymer layer distal the substrate. A first portion of the polymer layer contacting the connectors has a first thickness, and a second portion of the polymer layer between adjacent connectors has a second thickness smaller than the first thickness.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: Jing-Cheng Lin, Chi-Hsi Wu, Chen-Hua Yu, Po-Hao Tsai