Patents by Inventor Chi-Jen Liu

Chi-Jen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121028
    Abstract: Semiconductor devices and methods of forming are provided. In some embodiments the semiconductor device includes a substrate, and a dielectric layer over the substrate. A first conductive feature is included in the dielectric layer, the first conductive feature comprising a first number of material layers. A second conductive feature is included in the dielectric layer, the second conductive feature comprising a second number of material layers, where the second number is higher than the first number. A first electrical connector is included overlying the first conductive feature.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wei Hsu, Ling-Fu Nieh, Pinlei Edmund Chu, Chi-Jen Liu, Yi-Sheng Lin, Ting-Hsun Chang, Chia-Wei Ho, Liang-Guang Chen
  • Patent number: 11114339
    Abstract: A method of manufacturing a device includes exposing at least one of a source/drain contact plug or a gate contact plug to a metal ion source solution during a manufacturing process, wherein a constituent metal of a metal ion in the metal ion source solution and the at least one source/drain contact plug or gate contact plug is the same. If the source/drain contact plug or the gate contact plug is formed of cobalt, the metal ion source solution includes a cobalt ion source solution. If the source/drain contact plug or the gate contact plug is formed of tungsten, the metal ion source solution includes a tungsten ion source solution.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: September 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ling-Fu Nieh, Chun-Wei Hsu, Pinlei Edmund Chu, Chi-Jen Liu, Liang-Guang Chen, Yi-Sheng Lin
  • Publication number: 20210272818
    Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Inventors: Yi-Sheng LIN, Chi-Jen LIU, Chi-Hsiang SHEN, Te-Ming KUNG, Chun-Wei HSU, Chia-Wei HO, Yang-Chun CHENG, William Weilun HONG, Liang-Guang CHEN, Kei-Wei CHEN
  • Patent number: 11094555
    Abstract: The current disclosure describes a metal surface chemical mechanical polishing technique. A complex agent or micelle is included in the metal CMP slurry. The complex agent bonds with the oxidizer contained in the CMP slurry to form a complex, e.g., a supramolecular assembly, with an oxidizer molecule in the core of the assembly and surrounded by the complex agent molecule(s). The formed complexes have an enlarged size.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: August 17, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wei Hsu, Chi-Jen Liu, Kei-Wei Chen, Liang-Guang Chen, William Weilun Hong, Chi-Hsiang Shen, Chia-Wei Ho, Yang-Chun Cheng
  • Publication number: 20210183688
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Patent number: 11037799
    Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Yi-Sheng Lin, Chi-Jen Liu, Kei-Wei Chen, Liang-Guang Chen, Te-Ming Kung, William Weilun Hong, Chi-Hsiang Shen, Chia-Wei Ho, Chun-Wei Hsu, Yang-Chun Cheng
  • Publication number: 20210163859
    Abstract: A semiconductor cleaning solution for cleaning a surface of a semiconductor device, and a method of use and a method of manufacture of the cleaning solution are disclosed. In an embodiment, a material is polished away from a first surface of the semiconductor device and the first surface is cleaned with the cleaning solution. The cleaning solution may include a host having at least one ring. The host may have a hydrophilic exterior and a hydrophobic interior.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Inventors: Pinlei Edmund Chu, Chun-Wei Hsu, Ling-Fu Nieh, Chi-Jen Liu, Liang-Guang Chen, Yi-Sheng Lin
  • Patent number: 10961487
    Abstract: A semiconductor cleaning solution for cleaning a surface of a semiconductor device, and a method of use and a method of manufacture of the cleaning solution are disclosed. In an embodiment, a material is polished away from a first surface of the semiconductor device and the first surface is cleaned with the cleaning solution. The cleaning solution may include a host having at least one ring. The host may have a hydrophilic exterior and a hydrophobic interior.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pinlei Edmund Chu, Chun-Wei Hsu, Ling-Fu Nieh, Chi-Jen Liu, Liang-Guang Chen, Yi-Sheng Lin
  • Publication number: 20210078129
    Abstract: A chemical mechanical polishing (CMP) system includes a polishing pad configured to polish a substrate. The CMP system further includes a heating system configured to adjust a temperature of the polishing pad. The heating system comprises at least one heating element spaced apart from the polishing pad. The CMP system further includes a sensor configured to measure the temperature of the polishing pad.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Yi-Sheng LIN, Chi-Hsiang SHEN, Chi-Jen LIU, Chun-Wei Hsu, Yang-Chun CHENG, Kei-Wei CHEN
  • Publication number: 20210082688
    Abstract: The present disclosure provides a method for forming an integrated circuit (IC) structure. The method includes providing a metal gate (MG), an etch stop layer (ESL) formed on the MG, and a dielectric layer formed on the ESL. The method further includes etching the ESL and the dielectric layer to form a trench. A surface of the MG exposed in the trench is oxidized to form a first oxide layer on the MG. The method further includes removing the first oxide layer using a H3PO4 solution.
    Type: Application
    Filed: November 10, 2020
    Publication date: March 18, 2021
    Inventors: Shich-Chang Suen, Li-Chieh Wu, Chi-Jen Liu, He Hui Peng, Liang-Guang Chen, Yung-Chung Chen
  • Patent number: 10937691
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Patent number: 10847359
    Abstract: The present disclosure provides a method for forming an integrated circuit (IC) structure. The method includes providing a metal gate (MG), an etch stop layer (ESL) formed on the MG, and a dielectric layer formed on the ESL. The method further includes etching the ESL and the dielectric layer to form a trench. A surface of the MG exposed in the trench is oxidized to form a first oxide layer on the MG. The method further includes removing the first oxide layer using a H3PO4 solution.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 24, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shich-Chang Suen, Li-Chieh Wu, Chi-Jen Liu, He Hui Peng, Liang-Guang Chen, Yung-Chung Chen
  • Publication number: 20200279751
    Abstract: The current disclosure describes a metal surface chemical mechanical polishing technique. A complex agent or micelle is included in the metal CMP slurry. The complex agent bonds with the oxidizer contained in the CMP slurry to form a complex, e.g., a supramolecular assembly, with an oxidizer molecule in the core of the assembly and surrounded by the complex agent molecule(s). The formed complexes have an enlarged size.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Chun-Wei Hsu, Chi-Jen Liu, Kei-Wei Chen, Liang-Guang Chen, William Weilun Hong, Chi-Hsiang Shen, Chia-Wei Ho, Yang-Chun Cheng
  • Patent number: 10755934
    Abstract: A chemical mechanical polishing (CMP) system and associated semiconductor fabrication methods are disclosed herein. An exemplary method includes performing a planarization process in a polishing unit of a CMP system to planarize a surface of a material layer using a CMP slurry. The method further includes, after performing the planarization process, performing a buffing process in the polishing unit of the CMP system to buff the surface of the material layer using an ozone gas dissolved in deionized water (O3/DIW) solution. The method further includes controlling the performing of the planarization process and the performing of the buffing process, such that the CMP slurry is received by the polishing unit from a first pipeline during the planarization process and the O3/DIW solution is received by the polishing unit from a second pipeline during the buffing process.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shich-Chang Suen, Chi-Jen Liu, Ying-Liang Chuang, Li-Chieh Wu, Liang-Guang Chen, Ming-Liang Yen
  • Patent number: 10692732
    Abstract: The current disclosure describes a metal surface chemical mechanical polishing technique. A complex agent or micelle is included in the metal CMP slurry. The complex agent bonds with the oxidizer contained in the CMP slurry to form a complex, e.g., a supramolecular assembly, with an oxidizer molecule in the core of the assembly and surrounded by the complex agent molecule(s). The formed complexes have an enlarged size.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 23, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wei Hsu, Chi-Jen Liu, Kei-Wei Chen, Liang-Guang Chen, William Weilun Hong, Chi-hsiang Shen, Chia-Wei Ho, Yang-chun Cheng
  • Patent number: 10636701
    Abstract: Semiconductor devices and methods of forming are provided. In some embodiments the method includes forming a dielectric layer over a substrate and patterning the dielectric layer to form a first recess. The method may also include depositing a first layer in the first recess and depositing a second layer over the first layer, the second layer being different than the first layer. The method may also include performing a first chemical mechanical polish (CMP) process on the second layer using a first oxidizer and performing a second CMP process on remaining portions of the second layer and the first layer using the first oxidizer. The method may also include forming a first conductive element over the remaining portions of the first layer after the second CMP polish is performed.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: April 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wei Hsu, Ling-Fu Nieh, Pinlei Edmund Chu, Chi-Jen Liu, Yi-Sheng Lin, Ting-Hsun Chang, Chia-Wei Ho, Liang-Guang Chen
  • Publication number: 20200118823
    Abstract: A chemical mechanical polishing (CMP) system and associated semiconductor fabrication methods are disclosed herein. An exemplary method includes performing a planarization process in a polishing unit of a CMP system to planarize a surface of a material layer using a CMP slurry. The method further includes, after performing the planarization process, performing a buffing process in the polishing unit of the CMP system to buff the surface of the material layer using an ozone gas dissolved in deionized water (O3/DIW) solution. The method further includes controlling the performing of the planarization process and the performing of the buffing process, such that the CMP slurry is received by the polishing unit from a first pipeline during the planarization process and the O3/DIW solution is received by the polishing unit from a second pipeline during the buffing process.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Shich-Chang SUEN, Chi-Jen LIU, Ying-Liang CHUANG, Li-Chieh WU, Liang-Guang CHEN, Ming-Liang YEN
  • Publication number: 20200105580
    Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.
    Type: Application
    Filed: September 3, 2019
    Publication date: April 2, 2020
    Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
  • Publication number: 20200105668
    Abstract: A semiconductor device includes a first dielectric layer over a substrate, the first dielectric layer including a first dielectric material extending from a first side of the first dielectric layer distal from the substrate to a second side of the first dielectric layer opposing the first side; a second dielectric layer over the first dielectric layer; a conductive line in the first dielectric layer, the conductive line including a first conductive material, an upper surface of the conductive line being closer to the substrate than an upper surface of the first dielectric layer; a metal cap in the first dielectric layer, the metal cap being over and physically connected to the conductive line, the metal cap including a second conductive material different from the first conductive material; and a via in the second dielectric layer and physically connected to the metal cap, the via including the second conductive material.
    Type: Application
    Filed: July 29, 2019
    Publication date: April 2, 2020
    Inventors: Chia-Wei Ho, Chun-Wei Hsu, Chi-Hsiang Shen, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, William Weilun Hong, Liang-Guang Chen, Kei-Wei Chen
  • Publication number: 20200098590
    Abstract: The current disclosure describes a metal surface chemical mechanical polishing technique. A complex agent or micelle is included in the metal CMP slurry. The complex agent bonds with the oxidizer contained in the CMP slurry to form a complex, e.g., a supramolecular assembly, with an oxidizer molecule in the core of the assembly and surrounded by the complex agent molecule(s). The formed complexes have an enlarged size.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Chun-Wei Hsu, Chi-Jen Liu, Kei-Wei Chen, Liang-Guang Chen, William Weilun Hong, Chi-hsiang Shen, Chia-Wei Ho, Yang-chun Cheng