Patents by Inventor Chia-Ching Lin

Chia-Ching Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11575083
    Abstract: An apparatus is provided which comprises: a magnetic junction having a magnet with a first magnetization (e.g., perpendicular magnetization); a first structure adjacent to the magnetic junction, wherein the first structure comprises metal (e.g., Hf, Ta, W, Ir, Pt, Bi, Cu, Mo, Gf, Ge, Ga, or Au); an interconnect adjacent to the first structure; and a second structure adjacent to the interconnect such that the first structure and the second structure are on opposite surfaces of the interconnect, wherein the second structure comprises a magnet with a second magnetization (e.g., in-plane magnetization) substantially different from the first magnetization.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Ian Young, Dmitri Nikonov, Chia-Ching Lin
  • Patent number: 11574666
    Abstract: A memory device includes a spin orbit electrode structure having a dielectric structure including a first sidewall, a second sidewall opposite to the first sidewall, a top surface. The spin orbit electrode structure further includes an electrode having a spin orbit material adjacent to the dielectric structure, where the electrode has a first electrode portion on the top surface, a second electrode portion adjacent to the first sidewall and a third electrode portion adjacent to the second sidewall. The first electrode portion, the second electrode portion and the third electrode portion are contiguous. The spin orbit electrode structure further includes a conductive interconnect in contact with the second electrode portion or the third electrode portion. The memory device further includes a magnetic junction device on a portion of the top surface of the first electrode portion.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Chia-Ching Lin, Kaan Oguz, Ian Young
  • Patent number: 11557717
    Abstract: A memory apparatus is provided which comprises: a stack comprising a magnetic insulating material and a transition metal dichalcogenide (TMD), wherein the magnetic insulating material has a first magnetization. The stack behaves as a free magnet. The apparatus includes a fixed magnet with a second magnetization. An interconnect is further provided which comprises a spin orbit material, wherein the interconnect is adjacent to the stack.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 17, 2023
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Tanay Gosavi, Sasikanth Manipatruni, Dmitri Nikonov, Ian Young
  • Patent number: 11532439
    Abstract: Described is an ultra-dense ferroelectric memory. The memory is fabricated using a patterning method by that applies atomic layer deposition with selective dry and/or wet etch to increase memory density at a given via opening. A ferroelectric capacitor in one example comprises: a first structure (e.g., first electrode) comprising metal; a second structure (e.g., a second electrode) comprising metal; and a third structure comprising ferroelectric material, wherein the third structure is between and adjacent to the first and second structures, wherein a portion of the third structure is interdigitated with the first and second structures to increase surface area of the third structure. The increased surface area allows for higher memory density.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Nazila Haratipour, Seung Hoon Sung, Ashish Verma Penumatcha, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Patent number: 11502188
    Abstract: An apparatus is provided to improve spin injection efficiency from a magnet to a spin orbit coupling material. The apparatus comprises: a first magnet; a second magnet adjacent to the first magnet; a first structure comprising a tunneling barrier; a third magnet adjacent to the first structure; a stack of layers, a portion of which is adjacent to the third magnet, wherein the stack of layers comprises spin-orbit material; and a second structure comprising magnetoelectric material, wherein the second structure is adjacent to the first magnet.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Dmitri Nikonov, Ian A. Young, Benjamin Buford, Tanay Gosavi, Kaan Oguz, John J. Plombon
  • Publication number: 20220358619
    Abstract: A system produces a dolly zoom effect by utilizing side view information. The system first captures a main image at a main location. The main image includes at least a foreground object of a given size and a background. The system calculates one or more side view locations based on a zoom-in factor to be applied to the background and an estimated size of the foreground object. The system then guides a user to capture one or more side view images at the one or more side view locations. The foreground object of the given size is superimposed onto a zoomed-in background. Then the side view information is used by the system to perform image inpainting.
    Type: Application
    Filed: April 18, 2022
    Publication date: November 10, 2022
    Inventors: Chih-Wei Chen, Pei-Kuei Tsung, Yao-Sheng Wang, Chun Chen Lin, Chia-Ching Lin
  • Publication number: 20220352358
    Abstract: An apparatus is provided which comprises: a first stack comprising a magnetic insulating material (MI such as, EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene; a second stack comprising an MI material and a TMD, wherein the first and second stacks are separated by an insulating material (e.g., oxide); a magnet (e.g., a ferromagnet or a paramagnet) adjacent to the TMDs of the first and second stacks, and also adjacent to the insulating material; and a magnetoelectric material (e.g., (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, or (SmBi)FeO3) adjacent to the magnet.
    Type: Application
    Filed: June 6, 2022
    Publication date: November 3, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Sou-Chi Chang, Dmitri Nikonov, Ian A. Young
  • Publication number: 20220310147
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetic insulating material (MI such as EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene), wherein the magnetic insulating material has a first magnetization; a magnet with a second magnetization, wherein the magnet is adjacent to the TMD of the stack; and an interconnect comprising a spin orbit material, wherein the interconnect is adjacent to the magnet.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20220310901
    Abstract: Spin orbit torque (SOT) devices with topological insulator (TI) and heavy metal insert are described. In an example, an integrated circuit structure includes a spin orbit coupling (SOC) interconnect including a TI material. A magnetic layer is above the SOC interconnect. An insert layer includes a heavy metal between and in contact with the TI material and the magnetic layer.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Inventors: Kaan OGUZ, Tanay GOSAVI, Emily WALKER, Chia-Ching LIN, Ian A. YOUNG
  • Patent number: 11454537
    Abstract: An optical measurement stability control system includes a case, a circulating flow field, an optical measurement system and a heat dissipation flow field. The case has an airtight space. The circulating flow field is located in the airtight space and adapted to generate an airflow flowing in the airtight space. The optical measurement system is located in the airtight space and located on a flow path of the airflow. The heat dissipation flow field is connected to the case and located at an end of the flow path. The heat dissipation flow field discharges heat out of the airtight space by heat conduction and forced convection.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: September 27, 2022
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Hsien Su, Chun-Ming Wen, Chia-Ching Lin
  • Patent number: 11430942
    Abstract: A multilayer free magnetic layer structure for spin-based magnetic memory is provided herein. The multilayer free magnetic structure is employed in a magnetic tunnel junction (MTJ) and includes antiferromagnetically coupled magnetic layers. In some cases, the antiferromagnetic coupling is mediated by RKKY interaction with a Ru, Ir, Mo, Cu, or Rh spacer layer. In some cases, low damping magnetic materials, such as CoFeB, FeB, or CoFeBMo are used for the antiferromagnetically coupled magnetic layers. By employing the multilayer free magnetic structure for the MTJ as variously described herein, the critical or switching current can be significantly reduced compared to, for example, an MTJ employing a single-layer free magnetic layer. Thus, higher device efficiencies can be achieved. In some cases, the magnetic layers of the multilayer free magnetic structure are perpendicular magnets, which can be employed, for example, in perpendicular spin-orbit torque (pSOT) memory devices.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 30, 2022
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Tanay Gosavi, Sasikanth Manipatruni, Chia-Ching Lin, Gary Allen
  • Patent number: 11417830
    Abstract: Embodiments herein relate to magnetically doping a spin orbit torque electrode (SOT) in a magnetic random access memory apparatus. In particular, the apparatus may include a free layer of a magnetic tunnel junction (MTJ) coupled to a SOT electrode that is magnetically doped to apply an effective magnetic field on the free layer, where the free layer has a magnetic polarization in a first direction and where current flowing through the magnetically doped SOT electrode is to cause the magnetic polarization of the free layer to change to a second direction that is substantially opposite to the first direction.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Chia-Ching Lin, Gary Allen, Kaan Oguz, Kevin O'Brien, Noriyuki Sato, Ian Young, Dmitri Nikonov
  • Patent number: 11398562
    Abstract: An apparatus is provided which comprises: a first stack comprising a magnetic insulating material (MI such as, EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene; a second stack comprising an MI material and a TMD, wherein the first and second stacks are separated by an insulating material (e.g., oxide); a magnet (e.g., a ferromagnet or a paramagnet) adjacent to the TMDs of the first and second stacks, and also adjacent to the insulating material; and a magnetoelectric material (e.g., (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, or (SmBi)FeO3) adjacent to the magnet.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 26, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Sou-Chi Chang, Dmitri Nikonov, Ian A. Young
  • Patent number: 11393515
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetic insulating material (MI such as EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene), wherein the magnetic insulating material has a first magnetization; a magnet with a second magnetization, wherein the magnet is adjacent to the TMD of the stack; and an interconnect comprising a spin orbit material, wherein the interconnect is adjacent to the magnet.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Patent number: 11374163
    Abstract: A low power, energy efficient, nonvolatile, high-speed memory apparatus is provided that can function at extremely low temperatures (e.g., less than 30 degree Kelvin). The apparatus includes: a first structure comprising a magnet having free or unpinned magnetization; a second structure comprising Type-II multiferroic material, wherein the second structure is adjacent to the first structure; and an interconnect comprising spin orbit material, wherein the interconnect is adjacent to the first structure.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Chia-Ching Lin, Sasikanth Manipatruni, Dmitri Nikonov, Ian Young
  • Patent number: 11374164
    Abstract: Embodiments herein relate to a system, apparatus, and/or process for producing a spin orbit torque (SOT) electrode that includes a first layer with a first side to couple with a free layer of a magnetic tunnel junction (MTJ) and a second layer coupled with a second side of the first layer opposite the first side, where a value of an electrical resistance in the first SOT layer is lower than a value of an electrical resistance in the second SOT layer and where a current applied to the SOT electrode is to cause current to preferentially flow in the first SOT layer to cause a magnetic polarization of the free layer to change directions. During production of the SOT electrode, the second layer may act as an etch stop.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Chia-Ching Lin, Kaan Oguz, Christopher Wiegand, Angeline Smith, Noriyuki Sato, Kevin O'Brien, Benjamin Buford, Ian Young, Md Tofizur Rahman
  • Publication number: 20220199838
    Abstract: A transistor includes a channel layer including a transition metal dichalcogenide (TMD) material, an encapsulation layer on a first portion of the channel layer, a gate electrode above the encapsulation layer, a gate dielectric layer between the gate electrode and the encapsulation layer. The transistor further includes a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate structure is between drain contact and the source contact.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching LIn, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20220199756
    Abstract: Metal insulator metal capacitors or backend transistors having epitaxial oxides are described. In a first example, metal-insulator-metal (MIM) capacitor includes a first electrode plate. A capacitor dielectric is on the first electrode plate. The capacitor dielectric includes a single crystalline oxide material. A second electrode plate is on the capacitor dielectric, the second electrode plate having a portion over and parallel with the first electrode plate. In a second example, a transistor includes a gate electrode above a substrate. A gate dielectric above and on the gate electrode. The gate dielectric includes a single crystalline oxide material. A channel material layer is on the single crystalline oxide material. Source or drain contacts are on the channel material layer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: I-Cheng TUNG, Kaan OGUZ, Chia-Ching LIN, Sou-Chi CHANG, Matthew V. METZ, Uygar E. AVCI
  • Publication number: 20220199519
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode plate, and a first capacitor dielectric on the first electrode plate. The first capacitor dielectric is or includes a perovskite high-k dielectric material. A second electrode plate is on the first capacitor dielectric and has a portion over and parallel with the first electrode plate, and a second capacitor dielectric is on the second electrode plate. A third electrode plate is on the second capacitor dielectric and has a portion over and parallel with the second electrode plate.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ, Ashish Verma PENUMATCHA, Anandi ROY
  • Publication number: 20220199812
    Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Carl Naylor, Chelsey Dorow, Kevin O'Brien, Sudarat Lee, Kirby Maxey, Ashish Verma Penumatcha, Tanay Gosavi, Patrick Theofanis, Chia-Ching Lin, Uygar Avci, Matthew Metz, Shriram Shivaraman