Patents by Inventor Chia-Ling Chan

Chia-Ling Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230230976
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a substrate. The semiconductor structure also includes a gate spacer on a sidewall of the gate structure. The semiconductor structure also includes a source/drain feature adjacent to the gate structure. The semiconductor structure also includes a doped region extending along a bottom surface of the gate spacer. The source/drain feature has a curved sidewall connecting a top surface of the doped region and a bottom surface of the doped region.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng CHEN, Chia-Ling CHAN, Liang-Yin CHEN, Huicheng CHANG
  • Patent number: 11677028
    Abstract: A semiconductor device includes a fin structure disposed on a substrate, a shallow-trench isolation (STI) region on opposite sides of the fin structure, dielectric fin sidewall structures extending along sides of the fin structure and extending from a top of the STI region partially up the fin structure, and a source/drain region disposed within an upper portion of the fin structure. A bottom surface of the source/drain region contacts a top surface of the dielectric fin sidewall.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yang Lee, Chia-Chun Lan, Chia-Ling Chan, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11610885
    Abstract: A method for forming a semiconductor structure includes forming a fin structure over a substrate. The method also includes forming a gate structure across the fin structure. The method also includes depositing a dopant source layer over the gate structure. The method also includes driving dopants of the dopant source layer into the fin structure. The method also includes removing the dopant source layer. The method also includes annealing the dopants in the fin structure to form a doped region. The method also includes etching the doped region and the fin structure below the doped region to form a recess. The method also includes growing a source/drain feature in the recess.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Chia-Ling Chan, Liang-Yin Chen, Huicheng Chang
  • Publication number: 20230058699
    Abstract: A method of forming source/drain features in a FinFET device includes providing a fin formed over a substrate and a gate structure formed over a fin, forming a recess in the fin adjacent to the gate structure, forming a first epitaxial layer in the recess, forming a second epitaxial layer over the first epitaxial layer, and forming a third epitaxial layer over the second epitaxial layer. The second epitaxial layer may be doped with a first element, while one or both of the first and the third epitaxial layer includes a second element different from the first element. One or both of the first and the third epitaxial layer may be formed by a plasma deposition process.
    Type: Application
    Filed: November 7, 2022
    Publication date: February 23, 2023
    Inventors: Chia-Ling Chan, Derek Chen, Liang-Yin Chen, Chien-I Kuo
  • Publication number: 20220376089
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 11495674
    Abstract: A method of forming source/drain features in a FinFET device includes providing a fin formed over a substrate and a gate structure formed over a fin, forming a recess in the fin adjacent to the gate structure, forming a first epitaxial layer in the recess, forming a second epitaxial layer over the first epitaxial layer, and forming a third epitaxial layer over the second epitaxial layer. The second epitaxial layer may be doped with a first element, while one or both of the first and the third epitaxial layer includes a second element different from the first element. One or both of the first and the third epitaxial layer may be formed by a plasma deposition process.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ling Chan, Derek Chen, Liang-Yin Chen, Chien-I Kuo
  • Patent number: 11456373
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Publication number: 20220285552
    Abstract: In accordance with some embodiments, a method is provided. The method includes: forming a semiconductor fin protruding from a substrate; depositing a spacer layer over the semiconductor fin; after the depositing the spacer layer over the semiconductor fin, implanting a first dopant in the spacer layer and depositing a dopant layer of the first dopant on the spacer layer in alternating repeating steps; removing the dopant layer; and performing a thermal anneal process to drive the first dopant into the semiconductor fin from the spacer layer.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Chia-Ling Chan, Meng-Yueh Liu, Wei-Ken Lin
  • Patent number: 11342454
    Abstract: In accordance with some embodiments, a method is provided. The method includes: forming a semiconductor fin protruding from a substrate; depositing a spacer layer over the semiconductor fin; after the depositing the spacer layer over the semiconductor fin, implanting a first dopant in the spacer layer and depositing a dopant layer of the first dopant on the spacer layer in alternating repeating steps; removing the dopant layer; and performing a thermal anneal process to drive the first dopant into the semiconductor fin from the spacer layer.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ling Chan, Meng-Yueh Liu, Wei-Ken Lin
  • Patent number: 11264505
    Abstract: A method includes forming a fin over a substrate, forming a dummy gate structure over the fin, forming a first spacer over the dummy gate structure, implanting a first dopant in the fin to form a doped region of the fin adjacent the first spacer, removing the doped region of the fin to form a first recess, wherein the first recess is self-aligned to the doped region, and epitaxially growing a source/drain region in the first recess.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: March 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ling Chan, Yen-Chun Lin
  • Patent number: 11018259
    Abstract: A semiconductor device includes a substrate, at least one source drain feature, a gate structure, and at least one gate spacer. The source/drain feature is present at least partially in the substrate. The gate structure is present on the substrate. The gate spacer is present on at least one sidewall of the gate structure. At least a bottom portion of the gate spacer has a plurality of dopants therein.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yang Lo, Tung-Wen Cheng, Chia-Ling Chan, Mu-Tsang Lin
  • Publication number: 20210013337
    Abstract: A method includes forming a fin over a substrate, forming a dummy gate structure over the fin, forming a first spacer over the dummy gate structure, implanting a first dopant in the fin to form a doped region of the fin adjacent the first spacer, removing the doped region of the fin to form a first recess, wherein the first recess is self-aligned to the doped region, and epitaxially growing a source/drain region in the first recess.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 14, 2021
    Inventors: Chia-Ling Chan, Yen-Chun Lin
  • Patent number: 10879399
    Abstract: A semiconductor device includes a substrate, at least one source drain feature, a gate structure, and at least one gate spacer. The source/drain feature is present at least partially in the substrate. The gate structure is present on the substrate. The gate spacer is present on at least one sidewall of the gate structure. At least a bottom portion of the gate spacer has a plurality of dopants therein.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Wei-Yang Lo, Tung-Wen Cheng, Chia-Ling Chan, Mu-Tsang Lin
  • Patent number: 10861935
    Abstract: The present disclosure relates generally to an epitaxy scheme for forming source/drain regions in a semiconductor device, such as an n-channel device. In an example, a method of manufacturing a semiconductor device includes forming an active area on a substrate. The active area includes a source/drain region. The formation of the source/drain region includes forming a barrier region along a bottom surface and side surface of a recess in the active area. The barrier region includes arsenic having a first dopant concentration. The formation of the source/drain region further includes forming an epitaxial material on the barrier region in the recess. The epitaxial material includes phosphorous having a second dopant concentration.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-I Kuo, Shao-Fu Fu, Chia-Ling Chan, Yi-Fang Pai, Li-Li Su, Wei Hao Lu, Wei Te Chiang, Chii-Horng Li
  • Publication number: 20200343383
    Abstract: A semiconductor device includes a fin structure disposed on a substrate, a shallow-trench isolation (STI) region on opposite sides of the fin structure, dielectric fin sidewall structures extending along sides of the fin structure and extending from a top of the STI region partially up the fin structure, and a source/drain region disposed within an upper portion of the fin structure. A bottom surface of the source/drain region contacts a top surface of the dielectric fin sidewall.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Wei-Yang Lee, Chia-Chun Lan, Chia-Ling Chan, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20200343242
    Abstract: A method for forming a semiconductor structure includes forming a fin structure over a substrate. The method also includes forming a gate structure across the fin structure. The method also includes depositing a dopant source layer over the gate structure. The method also includes driving dopants of the dopant source layer into the fin structure. The method also includes removing the dopant source layer. The method also includes annealing the dopants in the fin structure to form a doped region. The method also includes etching the doped region and the fin structure below the doped region to form a recess. The method also includes growing a source/drain feature in the recess.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Chia-Ling CHAN, Liang-Yin CHEN, Huicheng CHANG
  • Publication number: 20200321465
    Abstract: In accordance with some embodiments, a method is provided. The method includes: forming a semiconductor fin protruding from a substrate; depositing a spacer layer over the semiconductor fin; after the depositing the spacer layer over the semiconductor fin, implanting a first dopant in the spacer layer and depositing a dopant layer of the first dopant on the spacer layer in alternating repeating steps; removing the dopant layer; and performing a thermal anneal process to drive the first dopant into the semiconductor fin from the spacer layer.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Chia-Ling Chan, Meng-Yueh Liu, Wei-Ken Lin
  • Patent number: 10784377
    Abstract: A method includes forming a fin over a substrate, forming a dummy gate structure over the fin, forming a first spacer over the dummy gate structure, implanting a first dopant in the fin to form a doped region of the fin adjacent the first spacer, removing the doped region of the fin to form a first recess, wherein the first recess is self-aligned to the doped region, and epitaxially growing a source/drain region in the first recess.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 22, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ling Chan, Yen-Chun Lin
  • Publication number: 20200259001
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 10727226
    Abstract: A semiconductor device and a method for forming the same are provided. The semiconductor device includes a gate structure and a source/drain feature. The gate structure is positioned over a fin structure. The source/drain feature is positioned adjacent to the gate structure. A portion of the source/drain feature embedded in the fin structure has an upper sidewall portion adjacent to a top surface of the fin structure and a lower sidewall portion below the upper sidewall portion. A first curve radius of the upper sidewall portion is different from a second curve radius of the lower sidewall portion in a cross-sectional view substantially along the longitudinal direction of the fin structure.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Chia-Ling Chan, Liang-Yin Chen, Huicheng Chang