Patents by Inventor Chieh-Jen Ku
Chieh-Jen Ku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220181460Abstract: Disclosed herein are transistor source/drain contacts, and related methods and devices. For example, in some embodiments, a transistor may include a channel and a source/drain contact, wherein the source/drain contact includes an interface material and a bulk material, the bulk material has a different material composition than the interface material, the interface material is between the bulk material and the channel, the interface material includes indium and an element different from indium, and the element is aluminum, vanadium, zirconium, magnesium, gallium, hafnium, silicon, lanthanum, tungsten, or cadmium.Type: ApplicationFiled: December 7, 2020Publication date: June 9, 2022Applicant: Intel CorporationInventors: Chieh-Jen Ku, Kendra Souther, Andre Baran, Pei-hua Wang, Bernhard Sell
-
Patent number: 11329047Abstract: Described herein are embedded dynamic random-access memory (eDRAM) memory cells and arrays, as well as corresponding methods and devices. An exemplary eDRAM memory array implements a memory cell that uses a thin-film transistor (TFT) as a selector transistor. One source/drain (S/D) electrode of the TFT is coupled to a capacitor for storing a memory state of the cell, while the other S/D electrode is coupled to a bitline. The bitline may be a shallow bitline in that a thickness of the bitline may be smaller than a thickness of one or more metal interconnects provided in the same metal layer as the bitline but used for providing electrical connectivity for components outside of the memory array. Such a bitline may be formed in a separate process than said one or more metal interconnects. In an embodiment, the memory cells may be formed in a back end of line process.Type: GrantFiled: April 18, 2018Date of Patent: May 10, 2022Assignee: Intel CorporationInventors: Yih Wang, Abhishek A. Sharma, Tahir Ghani, Allen B. Gardiner, Travis W. Lajoie, Pei-hua Wang, Chieh-jen Ku, Bernhard Sell, Juan G. Alzate-Vinasco, Blake C. Lin
-
Publication number: 20220102271Abstract: Tunable resistance thin film resistors for integrated circuits, related systems, and methods of fabrication are disclosed. Such tunable resistance thin film resistors include electrodes coupled to a resistive thin film that includes a base metal oxide and a second metal element. The resistors are tunable based on the concentration of the second metal element in the composition of the resistive thin film.Type: ApplicationFiled: September 25, 2020Publication date: March 31, 2022Applicant: Intel CorporationInventors: Chieh-Jen Ku, Bernhard Sell, Pei-Hua Wang
-
Publication number: 20220059704Abstract: Disclosed herein are transistor cap-channel arrangements, and related methods and devices. For example, in some embodiments, a transistor cap-channel arrangement may include a channel material having a conductivity type; an insulating material; and a cap material between the channel material and the insulating material, wherein the cap material is different from the channel material and the insulating material, and the cap material has a conductivity type that is a same conductivity type as the channel material.Type: ApplicationFiled: August 21, 2020Publication date: February 24, 2022Applicant: INTEL CORPORATIONInventors: Chieh-jen Ku, Bernhard Sell, Pei-hua Wang, Christopher J. Wiegand
-
Publication number: 20210408291Abstract: A thin film transistor (TFT) structure includes a gate electrode, a gate dielectric layer on the gate electrode, a channel layer including a semiconductor material with a first polarity on the gate dielectric layer. The TFT structure also includes a multi-layer material stack on the channel layer, opposite the gate dielectric layer, an interlayer dielectric (ILD) material over the multi-layer material stack and beyond a sidewall of the channel layer. The TFT structure further includes source and drain contacts through the interlayer dielectric material, and in contact with the channel layer, where the multi-layer material stack includes a barrier layer including oxygen and a metal in contact with the channel layer, where the barrier layer has a second polarity. A sealant layer is in contact with the barrier layer, where the sealant layer and the ILD have a different composition.Type: ApplicationFiled: June 26, 2020Publication date: December 30, 2021Applicant: Intel CorporationInventors: Abhishek A. Sharma, Arnab Sen Gupta, Travis W. LaJoie, Sarah Atanasov, Chieh-Jen Ku, Bernhard Sell, Noriyuki Sato, Van Le, Matthew Metz, Hui Jae Yoo, Pei-Hua Wang
-
Publication number: 20210408002Abstract: An integrated circuit capacitor array includes a plurality of first electrodes, wherein individual ones of the first electrodes are substantially cylindrical with a base over a substrate and an open top end over the base. A first dielectric material layer spans a distance between the first electrodes but is absent from an interior of the first electrodes, where the first dielectric material layer is substantially planar and bifurcates a height of first electrodes. A second dielectric material layer lines the interior of the first electrodes, and lines portions of an exterior of the first electrodes above and below the first dielectric material layer and a second electrode is within the interior of the first electrodes and is around the exterior of the first electrodes above and below the first dielectric material layer.Type: ApplicationFiled: June 26, 2020Publication date: December 30, 2021Applicant: Intel CorporationInventors: Travis W. LaJoie, Abhishek A. Sharma, Van Le, Chieh-Jen Ku, Pei-Hua Wang, Bernhard Sell, Juan G. Alzate-Vinasco
-
Publication number: 20210366821Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.Type: ApplicationFiled: August 10, 2021Publication date: November 25, 2021Inventors: Travis LAJOIE, Abhishek SHARMA, Juan ALZATE-VINASCO, Chieh-Jen KU, Shem OGADHOH, Allen GARDINER, Blake LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
-
Patent number: 11121073Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.Type: GrantFiled: April 2, 2018Date of Patent: September 14, 2021Assignee: Intel CorporationInventors: Travis Lajoie, Abhishek Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem Ogadhoh, Allen Gardiner, Blake Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
-
Publication number: 20210125992Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure above a substrate. The interconnect structure may include an inter-level dielectric (ILD) layer and a separation layer above the ILD layer. A first conductor and a second conductor may be within the ILD layer. The first conductor may have a first physical configuration, and the second conductor may have a second physical configuration different from the first physical configuration. Other embodiments may be described and/or claimed.Type: ApplicationFiled: December 22, 2017Publication date: April 29, 2021Inventors: Travis LAJOIE, Tahir GHANI, Jack T. KAVALIEROS, Shem O. OGADHOH, Yih WANG, Bernhard SELL, Allen GARDINER, Blake LIN, Juan G. ALZATE VINASCO, Pei-Hua WANG, Chieh-Jen KU, Abhishek A. SHARMA
-
Publication number: 20210098373Abstract: Integrated circuit structures having differentiated interconnect lines in a same dielectric layer, and methods of fabricating integrated circuit structures having differentiated interconnect lines in a same dielectric layer, are described. In an example, an integrated circuit structure includes an inter-layer dielectric (ILD) layer above a substrate. A plurality of conductive interconnect lines is in the ILD layer. The plurality of conductive interconnect lines includes a first interconnect line having a first height, and a second interconnect line immediately laterally adjacent to but spaced apart from the first interconnect line, the second interconnect line having a second height less than the first height.Type: ApplicationFiled: September 26, 2019Publication date: April 1, 2021Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Juan G. ALZATE VINASCO, Chieh-Jen KU, Shem O. OGADHOH, Allen B. GARDINER, Blake C. LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
-
Publication number: 20200411520Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411697Abstract: Embodiments herein describe techniques for a transistor above a substrate. The transistor includes a channel layer above the substrate. The channel layer includes a first channel material of a first conductivity. In addition, the channel layer further includes elements of one or more additional materials distributed within the channel layer. The channel layer including the elements of the one or more additional materials has a second conductivity different from the first conductivity. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Chieh-Jen KU, Pei-Hua WANG, Bernhard SELL, Martin M. MITAN, Leonard C. PIPES
-
Publication number: 20200411426Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Ting CHEN, Vinaykumar V. HADAGALI
-
Publication number: 20200411525Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411635Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. The semiconductor device further includes a capacitor having a bottom plate above the substrate, a capacitor dielectric layer adjacent to and above the bottom plate, and a top plate adjacent to and above the capacitor dielectric layer. The bottom plate, the capacitor dielectric layer, and the top plate are within the first ILD layer or the second ILD layer. Furthermore, an air gap is formed next to the top plate and below a top surface of the second ILD layer. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200403076Abstract: A device is disclosed. The device includes a source contact and a drain contact, a first dielectric between the source contact and the drain contact, a channel under the source contact and the drain contact, and a gate electrode below the channel, the gate electrode in an area under the first dielectric that does not laterally extend under the source contact or the drain contact. A second dielectric is above the gate electrode and underneath the channel.Type: ApplicationFiled: June 20, 2019Publication date: December 24, 2020Inventors: Chieh-Jen KU, Pei-Hua WANG, Bernhard SELL, Travis W. LAJOIE
-
Publication number: 20200365701Abstract: A device is disclosed. The device includes a source contact in a source contact trench and a drain contact in a drain contact trench, a channel under the source contact and the drain contact, a first spacing layer on a bottom of the source contact trench and a second spacing layer on a bottom of the drain contact trench. The first spacing layer and the second spacing layer are on the surface of the channel. The device also includes a gate electrode below the channel and a dielectric above the gate electrode and underneath the channel.Type: ApplicationFiled: May 16, 2019Publication date: November 19, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG
-
Publication number: 20200350412Abstract: Thin film transistors having alloying source or drain metals are described. In an example, an integrated circuit structure includes a semiconducting oxide material over a gate electrode. A pair of conductive contacts is on a first region of the semiconducting oxide material. A second region of the semiconducting oxide material is between the pair of conductive contacts. The pair of conductive contacts includes a metal species. The metal species is in the first region of the semiconducting oxide material but not in the second region of the semiconducting oxide material.Type: ApplicationFiled: May 1, 2019Publication date: November 5, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Gregory GEORGE, Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Juan G. ALZATE VINASCO
-
METHOD OF CONTACT PATTERNING OF THIN FILM TRANSISTORS FOR EMBEDDED DRAM USING A MULTI-LAYER HARDMASK
Publication number: 20200303520Abstract: An integrated circuit structure comprises one or more backend-of-line (BEOL) interconnects formed over a first ILD layer. An etch stop layer is over the one or more BEOL interconnects, the etch stop layer having a plurality of vias that are in contact with the one or more BEOL interconnects. An array of BEOL thin-film-transistors (TFTs) is over the etch stop layer, wherein adjacent ones of the BEOL TFTs are separated by isolation trench regions. The TFTs are aligned with at least one of the plurality of vias to connect to the one or more BEOL interconnects, wherein each of the BEOL TFTs comprise a bottom gate electrode, a gate dielectric layer over the bottom gate electrode, and an oxide-based semiconductor channel layer over the bottom gate electrode having source and drain regions therein. Contacts are formed over the source and drain regions of each of BEOL TFTs, wherein the contacts have a critical dimension of 35 nm or less, and wherein the BEOL TFTs have an absence of diluted hydro-fluoride (DHF).Type: ApplicationFiled: March 22, 2019Publication date: September 24, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Nikhil MEHTA, Shu ZHOU, Jared STOEGER, Allen B. GARDINER, Akash GARG, Shem OGADHOH, Vinaykumar HADAGALI, Travis W. LAJOIE -
Publication number: 20200243376Abstract: Embodiments disclosed herein include transistors and methods of forming such transistors. In an embodiment, the transistor may comprise a semiconductor channel with a first surface and a second surface opposite the first surface. In an embodiment, a source electrode may contact the first surface of the semiconductor channel and a drain electrode may contact the first surface of the semiconductor channel. In an embodiment, a gate dielectric may be over the second surface of the semiconductor channel and a gate electrode may be separated from the semiconductor channel by the gate dielectric. In an embodiment, an isolation trench may be adjacent to the semiconductor channel. In an embodiment, the isolation trench comprises a spacer lining the surface of the isolation trench, and an isolation fill material.Type: ApplicationFiled: January 29, 2019Publication date: July 30, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Harish GANAPATHY, Leonard C. PIPES