Patents by Inventor Chieh-Wei Chen

Chieh-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210142100
    Abstract: A computing device divides a training image into a plurality of training blocks, and the training image includes a training object. The computing device calculates, for each of the training blocks, a correct confidence score of the training object covering the training block according to an image-marking data and a confidence-score-translating function, and the image-marking data includes a piece of location information of the training object in the training image. Then, the computing device trains a deep-learning model with the training image, the correct confidence scores and the image-marking data to generate the object-detecting model.
    Type: Application
    Filed: December 2, 2019
    Publication date: May 13, 2021
    Inventors: Yen-Lin CHEN, Hsiu-Chih CHEN, Chieh-Min CHANG, Chao-Wei YU, Meng-Tsan LI
  • Patent number: 11004997
    Abstract: An infrared thermal emitter includes a substrate, a light-emitting unit and an infrared-emitting unit. The light-emitting unit is disposed on the substrate in a laminating direction and has a light-exiting surface away from the substrate. The infrared-emitting unit is disposed on the substrate in the laminating direction to cover the light-emitting unit and includes a layered structure having a light-absorbing layer that is aligned with the light-emitting unit in the laminating direction. The light-absorbing layer absorbs light emitted from the light-emitting unit so as to be heated up and to generate infrared radiation.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: May 11, 2021
    Assignees: GODSMITH SENSOR INC., OPTO TECH CORPORATION
    Inventors: Jin-Shown Shie, Yi-Chun Liao, Chieh-Yi Chen, Chung-Cheng Lin, Cheng-Wei Yang, Chi-Tseng Chang
  • Patent number: 11006022
    Abstract: A video system includes a scene analyzing circuit, configured to perform a scene analysis operation on a video signal and output a scene analysis result; and a video processing module, comprising a first video processing circuit, configured to perform a first video operation on the video signal and output a first processing result; and a second video processing circuit, configured to perform a second video operation on the first processing result according to the scene analysis result.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 11, 2021
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chieh-Cheng Chen, Ting-Wei Chang
  • Publication number: 20210119034
    Abstract: A method of forming a semiconductor device includes surrounding a dummy gate disposed over a fin with a dielectric material; forming a gate trench in the dielectric material by removing the dummy gate and by removing upper portions of a first gate spacer disposed along sidewalls of the dummy gate, the gate trench comprising a lower trench between remaining lower portions of the first gate spacer and comprising an upper trench above the lower trench; forming a gate dielectric layer, a work function layer and a glue layer successively in the gate trench; removing the glue layer and the work function layer from the upper trench; filling the gate trench with a gate electrode material after the removing; and removing the gate electrode material from the upper trench, remaining portions of the gate electrode material forming a gate electrode.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Jian-Jou Lian, Chun-Neng Lin, Chieh-Wei Chen, Tzu-Ang Chiang, Ming-Hsi Yeh
  • Publication number: 20210119438
    Abstract: An interface control circuit complying with an interface specification includes: an interface signal transceiver circuit and a protection circuit. The interface signal transceiver circuit is coupled to a first interface connection pin and a second interface connection pin of a first interface connector circuit. The interface signal transceiver circuit is for transmitting and/or receiving an interface signal according to the interface specification. When the interface signal transceiver circuit operates under a first state, the protection circuit determines whether a foreign object exists between the first interface connection pin and the second interface connection pin according to a voltage change or a current change at the second interface connection pin. Under the first state, the interface signal transceiver circuit generates a pull-up signal and a pull-down signal which are toggled with each other at the first interface connection pin.
    Type: Application
    Filed: May 13, 2020
    Publication date: April 22, 2021
    Inventors: Yu-Jen Cheng, Chih-Wei Mu, Sheng-Tsung Chen, Chieh-Min Lo, Wei-Chung Chang
  • Publication number: 20210072428
    Abstract: A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 11, 2021
    Inventors: Yi-Pai Huang, Manjap Singh, Cheng-Ho Yu, ByoungSuk Kim, Yi Huang, Hitoshi Yamamoto, Mathew K. Mathai, Chieh-Wei Chen, Ping-Yen Chou, Donghee Nam, Chaohao Wang, Hao Chen
  • Publication number: 20210057282
    Abstract: A method of forming a semiconductor device includes forming a first dummy gate structure and a second dummy gate structure over a fin protruding above a substrate, where the first dummy gate structure and the second dummy gate structure are surrounded by a dielectric layer; and replacing the first dummy gate structure and the second dummy gate structure with a first metal gate and a second metal gate, respectively, where the replacing includes: removing the first and the second dummy gate structures to form a first recess and a second recess in the dielectric layer, respectively; forming a gate dielectric layer in the first recess and in the second recess; forming an N-type work function layer and a capping layer successively over the gate dielectric layer in the second recess but not in the first recess; and filling the first recess and the second recess with an electrically conductive material.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Chieh-Wei Chen, Jian-Jou Lian, Chun-Neng Lin, Tzu-Ang Chiang, Ming-Hsi Yeh
  • Patent number: 10780482
    Abstract: Disclosed is a tube-propelling apparatus for a tube bending machine. The apparatus comprises a main tube-propelling base mounted on a slide rail mechanism of a tube bending machine tool, wherein a penetrating hole though which both a fixing sleeve and a core rod pass is provided on the main tube-propelling base, the rear end of the fixing sleeve is fixed in the penetrating hole, and the front end of the fixing sleeve is provided with a tube clamping apparatus. The propelling apparatus further comprises a surplus material auxiliary propelling base mounted on the slide rail mechanism of the tube bending machine tool, wherein the surplus material auxiliary propelling base is provided with a through-hole coaxial with the penetrating hole of the main tube-propelling base. An auxiliary pushing sleeve is mounted in the through-hole, and the core rod passes through the auxiliary pushing sleeve.
    Type: Grant
    Filed: March 30, 2013
    Date of Patent: September 22, 2020
    Inventors: Chieh-Wei Chen, Jun Lu
  • Patent number: 10700151
    Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
  • Patent number: 10672320
    Abstract: A display device may include a processor that may receive image data, such that the image data may include gray level data and display brightness value (DBV) data for a first pixel of a display. The processor may then determine a gain compensation factor associated with the first pixel based on a correction spatial map, a brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may then determine an offset compensation factor associated with the first pixel based on the correction spatial map, the brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may generate compensated gray level data by applying the gain compensation factor and the offset compensation factor to the gray level data and transmit the compensated gray level data to pixel driving circuitry associated with the first pixel.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Hung Sheng Lin, Soojin Park, Bhadrinarayana L. Visweswaran, Chieh-Wei Chen, Anshi Liang, Marc Albrecht, Pierre-Yves Emelie, Sean C. Chang, Hyunwoo Nho, Mohammad Hajirostam, Myung-Je Cho, Shengkui Gao, Wei H. Yao, Yafei Bi
  • Publication number: 20200099012
    Abstract: Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.
    Type: Application
    Filed: June 21, 2019
    Publication date: March 26, 2020
    Inventors: Yifan Zhang, Amin Salehi, Yun Liu, Paul S. Drzaic, Tae-Wook Koh, Chih Jen Yang, Bhadrinarayana Lalgudi Visweswaran, Chieh-Wei Chen
  • Patent number: 10535840
    Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have a reflective electrode such as a metal anode and a partially reflective electrode such as a metal cathode. Emissive material may be formed between the electrodes. The electrodes of each organic light-emitting diode may form an optical cavity. A wrinkled layer may be formed over the optical cavity to reduce sensitivity to process variations associated with forming encapsulation structures for the display. The wrinkled layer may include annealed organic layers. The organic layers may wrinkle during an annealing process at an annealing temperature. The annealed organic layers may include a first organic layer with a glass transition temperature below the annealing temperature and a second organic layer with a glass transition temperature above the annealing temperature.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: January 14, 2020
    Assignee: Apple Inc.
    Inventors: Chieh-Wei Chen, Ting-Yi Cho
  • Patent number: 10453388
    Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 22, 2019
    Assignee: Apple Inc.
    Inventors: Jiye Lee, Yifan Zhang, Chieh-Wei Chen, Tae-Wook Koh, Hongwei Chang, Paul S. Drzaic
  • Publication number: 20190237001
    Abstract: A display device may include a processor that may receive image data, such that the image data may include gray level data and display brightness value (DBV) data for a first pixel of a display. The processor may then determine a gain compensation factor associated with the first pixel based on a correction spatial map, a brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may then determine an offset compensation factor associated with the first pixel based on the correction spatial map, the brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may generate compensated gray level data by applying the gain compensation factor and the offset compensation factor to the gray level data and transmit the compensated gray level data to pixel driving circuitry associated with the first pixel.
    Type: Application
    Filed: September 14, 2018
    Publication date: August 1, 2019
    Inventors: Hung Sheng Lin, Soojin Park, Bhadrinarayana L. Visweswaran, Chieh-Wei Chen, Anshi Liang, Marc Albrecht, Pierre-Yves Emelie, Sean C. Chang, Hyunwoo Nho, Mohammad Hajirostam, Myung-Je Cho, Shengkui Gao, Wei H. Yao, Yafei Bi
  • Publication number: 20190237701
    Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have a reflective electrode such as a metal anode and a partially reflective electrode such as a metal cathode. Emissive material may be formed between the electrodes. The electrodes of each organic light-emitting diode may form an optical cavity. A wrinkled layer may be formed over the optical cavity to reduce sensitivity to process variations associated with forming encapsulation structures for the display. The wrinkled layer may include annealed organic layers. The organic layers may wrinkle during an annealing process at an annealing temperature. The annealed organic layers may include a first organic layer with a glass transition temperature below the annealing temperature and a second organic layer with a glass transition temperature above the annealing temperature.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 1, 2019
    Inventors: Chieh-Wei Chen, Ting-Yi Cho
  • Publication number: 20190189732
    Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
    Type: Application
    Filed: January 4, 2019
    Publication date: June 20, 2019
    Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
  • Patent number: 10224386
    Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: March 5, 2019
    Assignee: Apple Inc.
    Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
  • Patent number: 10163388
    Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 25, 2018
    Assignee: Apple Inc.
    Inventors: Yifan Zhang, Paul S. Drzaic, Chieh-Wei Chen, Jean-Pierre S. Guillou, Koorosh Aflatooni
  • Publication number: 20180247588
    Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: Jiye Lee, Yifan Zhang, Chieh-Wei Chen, Tae-Wook Koh, Hongwei Chang, Paul S. Drzaic
  • Publication number: 20180090553
    Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 29, 2018
    Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu