Patents by Inventor Chieh-Wei Chen
Chieh-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210119034Abstract: A method of forming a semiconductor device includes surrounding a dummy gate disposed over a fin with a dielectric material; forming a gate trench in the dielectric material by removing the dummy gate and by removing upper portions of a first gate spacer disposed along sidewalls of the dummy gate, the gate trench comprising a lower trench between remaining lower portions of the first gate spacer and comprising an upper trench above the lower trench; forming a gate dielectric layer, a work function layer and a glue layer successively in the gate trench; removing the glue layer and the work function layer from the upper trench; filling the gate trench with a gate electrode material after the removing; and removing the gate electrode material from the upper trench, remaining portions of the gate electrode material forming a gate electrode.Type: ApplicationFiled: October 18, 2019Publication date: April 22, 2021Inventors: Jian-Jou Lian, Chun-Neng Lin, Chieh-Wei Chen, Tzu-Ang Chiang, Ming-Hsi Yeh
-
Publication number: 20210072428Abstract: A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The pixel array may have a diagonal layout and may be covered by vertically oriented lenticular lenses.Type: ApplicationFiled: August 27, 2020Publication date: March 11, 2021Inventors: Yi-Pai Huang, Manjap Singh, Cheng-Ho Yu, ByoungSuk Kim, Yi Huang, Hitoshi Yamamoto, Mathew K. Mathai, Chieh-Wei Chen, Ping-Yen Chou, Donghee Nam, Chaohao Wang, Hao Chen
-
Publication number: 20210057282Abstract: A method of forming a semiconductor device includes forming a first dummy gate structure and a second dummy gate structure over a fin protruding above a substrate, where the first dummy gate structure and the second dummy gate structure are surrounded by a dielectric layer; and replacing the first dummy gate structure and the second dummy gate structure with a first metal gate and a second metal gate, respectively, where the replacing includes: removing the first and the second dummy gate structures to form a first recess and a second recess in the dielectric layer, respectively; forming a gate dielectric layer in the first recess and in the second recess; forming an N-type work function layer and a capping layer successively over the gate dielectric layer in the second recess but not in the first recess; and filling the first recess and the second recess with an electrically conductive material.Type: ApplicationFiled: August 23, 2019Publication date: February 25, 2021Inventors: Chieh-Wei Chen, Jian-Jou Lian, Chun-Neng Lin, Tzu-Ang Chiang, Ming-Hsi Yeh
-
Patent number: 10780482Abstract: Disclosed is a tube-propelling apparatus for a tube bending machine. The apparatus comprises a main tube-propelling base mounted on a slide rail mechanism of a tube bending machine tool, wherein a penetrating hole though which both a fixing sleeve and a core rod pass is provided on the main tube-propelling base, the rear end of the fixing sleeve is fixed in the penetrating hole, and the front end of the fixing sleeve is provided with a tube clamping apparatus. The propelling apparatus further comprises a surplus material auxiliary propelling base mounted on the slide rail mechanism of the tube bending machine tool, wherein the surplus material auxiliary propelling base is provided with a through-hole coaxial with the penetrating hole of the main tube-propelling base. An auxiliary pushing sleeve is mounted in the through-hole, and the core rod passes through the auxiliary pushing sleeve.Type: GrantFiled: March 30, 2013Date of Patent: September 22, 2020Inventors: Chieh-Wei Chen, Jun Lu
-
Patent number: 10700151Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.Type: GrantFiled: January 4, 2019Date of Patent: June 30, 2020Assignee: Apple Inc.Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
-
Patent number: 10672320Abstract: A display device may include a processor that may receive image data, such that the image data may include gray level data and display brightness value (DBV) data for a first pixel of a display. The processor may then determine a gain compensation factor associated with the first pixel based on a correction spatial map, a brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may then determine an offset compensation factor associated with the first pixel based on the correction spatial map, the brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may generate compensated gray level data by applying the gain compensation factor and the offset compensation factor to the gray level data and transmit the compensated gray level data to pixel driving circuitry associated with the first pixel.Type: GrantFiled: September 14, 2018Date of Patent: June 2, 2020Assignee: Apple Inc.Inventors: Hung Sheng Lin, Soojin Park, Bhadrinarayana L. Visweswaran, Chieh-Wei Chen, Anshi Liang, Marc Albrecht, Pierre-Yves Emelie, Sean C. Chang, Hyunwoo Nho, Mohammad Hajirostam, Myung-Je Cho, Shengkui Gao, Wei H. Yao, Yafei Bi
-
Publication number: 20200099012Abstract: Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.Type: ApplicationFiled: June 21, 2019Publication date: March 26, 2020Inventors: Yifan Zhang, Amin Salehi, Yun Liu, Paul S. Drzaic, Tae-Wook Koh, Chih Jen Yang, Bhadrinarayana Lalgudi Visweswaran, Chieh-Wei Chen
-
Patent number: 10535840Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have a reflective electrode such as a metal anode and a partially reflective electrode such as a metal cathode. Emissive material may be formed between the electrodes. The electrodes of each organic light-emitting diode may form an optical cavity. A wrinkled layer may be formed over the optical cavity to reduce sensitivity to process variations associated with forming encapsulation structures for the display. The wrinkled layer may include annealed organic layers. The organic layers may wrinkle during an annealing process at an annealing temperature. The annealed organic layers may include a first organic layer with a glass transition temperature below the annealing temperature and a second organic layer with a glass transition temperature above the annealing temperature.Type: GrantFiled: October 22, 2018Date of Patent: January 14, 2020Assignee: Apple Inc.Inventors: Chieh-Wei Chen, Ting-Yi Cho
-
Patent number: 10453388Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.Type: GrantFiled: April 30, 2018Date of Patent: October 22, 2019Assignee: Apple Inc.Inventors: Jiye Lee, Yifan Zhang, Chieh-Wei Chen, Tae-Wook Koh, Hongwei Chang, Paul S. Drzaic
-
Publication number: 20190237001Abstract: A display device may include a processor that may receive image data, such that the image data may include gray level data and display brightness value (DBV) data for a first pixel of a display. The processor may then determine a gain compensation factor associated with the first pixel based on a correction spatial map, a brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may then determine an offset compensation factor associated with the first pixel based on the correction spatial map, the brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may generate compensated gray level data by applying the gain compensation factor and the offset compensation factor to the gray level data and transmit the compensated gray level data to pixel driving circuitry associated with the first pixel.Type: ApplicationFiled: September 14, 2018Publication date: August 1, 2019Inventors: Hung Sheng Lin, Soojin Park, Bhadrinarayana L. Visweswaran, Chieh-Wei Chen, Anshi Liang, Marc Albrecht, Pierre-Yves Emelie, Sean C. Chang, Hyunwoo Nho, Mohammad Hajirostam, Myung-Je Cho, Shengkui Gao, Wei H. Yao, Yafei Bi
-
Publication number: 20190237701Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have a reflective electrode such as a metal anode and a partially reflective electrode such as a metal cathode. Emissive material may be formed between the electrodes. The electrodes of each organic light-emitting diode may form an optical cavity. A wrinkled layer may be formed over the optical cavity to reduce sensitivity to process variations associated with forming encapsulation structures for the display. The wrinkled layer may include annealed organic layers. The organic layers may wrinkle during an annealing process at an annealing temperature. The annealed organic layers may include a first organic layer with a glass transition temperature below the annealing temperature and a second organic layer with a glass transition temperature above the annealing temperature.Type: ApplicationFiled: October 22, 2018Publication date: August 1, 2019Inventors: Chieh-Wei Chen, Ting-Yi Cho
-
Publication number: 20190189732Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.Type: ApplicationFiled: January 4, 2019Publication date: June 20, 2019Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
-
Patent number: 10224386Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.Type: GrantFiled: December 6, 2016Date of Patent: March 5, 2019Assignee: Apple Inc.Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
-
Patent number: 10163388Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.Type: GrantFiled: November 9, 2015Date of Patent: December 25, 2018Assignee: Apple Inc.Inventors: Yifan Zhang, Paul S. Drzaic, Chieh-Wei Chen, Jean-Pierre S. Guillou, Koorosh Aflatooni
-
Publication number: 20180247588Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.Type: ApplicationFiled: April 30, 2018Publication date: August 30, 2018Inventors: Jiye Lee, Yifan Zhang, Chieh-Wei Chen, Tae-Wook Koh, Hongwei Chang, Paul S. Drzaic
-
Publication number: 20180090553Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.Type: ApplicationFiled: December 6, 2016Publication date: March 29, 2018Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
-
Patent number: 9799713Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. A planarization layer may be interposed between the thin-film transistor circuitry and the organic light-emitting diodes. To protect the organic light-emitting diodes from photoactive compounds that may be outgassed from the planarization layer, an inorganic barrier layer may be interposed between the planarization layer and the organic light-emitting diodes. The inorganic barrier layer may be formed on top of and/or below a pixel definition layer that defines light-emitting zones for the organic light-emitting diodes. In another suitable arrangement, the inorganic barrier layer may itself define light-emitting zones and may be used in place of a polymer-based pixel definition layer. The inorganic barrier layer may include trenches in which the emissive material of the light-emitting diodes is formed.Type: GrantFiled: May 31, 2016Date of Patent: October 24, 2017Assignee: Apple Inc.Inventors: Jae Won Choi, Shih Chang Chang, Young Bae Park, ZhiFeng Zhan, Chieh-Wei Chen, Tsung-Ting Tsai, Chin-Wei Lin, Paul S. Drzaic
-
Publication number: 20170076659Abstract: An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.Type: ApplicationFiled: November 9, 2015Publication date: March 16, 2017Inventors: Yifan Zhang, Paul S. Drzaic, Chieh-Wei Chen, Jean-Pierre S. Guillou, Koorosh Aflatooni
-
Publication number: 20170025489Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. A planarization layer may be interposed between the thin-film transistor circuitry and the organic light-emitting diodes. To protect the organic light-emitting diodes from photoactive compounds that may be outgassed from the planarization layer, an inorganic barrier layer may be interposed between the planarization layer and the organic light-emitting diodes. The inorganic barrier layer may be formed on top of and/or below a pixel definition layer that defines light-emitting zones for the organic light-emitting diodes. In another suitable arrangement, the inorganic barrier layer may itself define light-emitting zones and may be used in place of a polymer-based pixel definition layer. The inorganic barrier layer may include trenches in which the emissive material of the light-emitting diodes is formed.Type: ApplicationFiled: May 31, 2016Publication date: January 26, 2017Inventors: Jae Won Choi, Shih Chang Chang, Young Bae Park, ZhiFeng Zhan, Chieh-Wei Chen, Tsung-Ting Tsai, Chin-Wei Lin, Paul S. Drzaic
-
Patent number: 9419065Abstract: An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.Type: GrantFiled: July 1, 2013Date of Patent: August 16, 2016Assignee: Apple Inc.Inventors: Brett W. Degner, Chieh-Wei Chen, Dinesh C. Mathew, Paul S. Drzaic, Sang Ha Kim, Silvio Grespan, John Z. Zhong, Jean-Pierre Guillou, Kuo-Hua Sung, Young Bae Park, Vasudha Gupta