Patents by Inventor Chih-Chiang Wu

Chih-Chiang Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240305210
    Abstract: A D-mode GaN transistor synchronous rectifier of the present invention includes a power switching module, a peak detection module, and a gate driver module. The peak detection module stores energy when the negative end of the secondary side winding of the power converter is at a high voltage. The power switching module includes a first switch and a D-mode GaN HEMT as a second switch connected in series. The energy is provided to the module gate of the power switching module through the gate driver module to keep the first switch turned on. The gate driver module conducts the module gate and the module source when the positive end of the secondary side winding is at a low voltage, such that a clamp circuit pulls the gate-source voltage of the second switch below threshold and turns it off. The synchronous rectifier replaces conventional diode rectifier, having lower conduction loss and response ringing.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 12, 2024
    Inventors: Wei-Hua CHIENG, Yi Chang, Da-Jeng Yao, Li-Chuan Tang, Chih-Chiang Wu, Yueh-Tsung Shieh, Ching-Yao Liu
  • Publication number: 20240274715
    Abstract: A semiconductor device includes a gate structure on a substrate and an epitaxial layer adjacent to the gate structure, in which the epitaxial layer includes a first buffer layer, an anisotropic layer on the first buffer layer, a second buffer layer on the first buffer layer, and a bulk layer on the anisotropic layer. Preferably, a concentration of boron in the bulk layer is less than a concentration of boron in the anisotropic layer, a concentration of boron in the first buffer layer is less than a concentration of boron in the second buffer layer, and the concentration of boron in the second buffer layer is less than the concentration of boron in the anisotropic layer.
    Type: Application
    Filed: March 21, 2023
    Publication date: August 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Hsiang Wang, Yi-Fan Li, Chung-Ting Huang, Chi-Hsuan Tang, Chun-Jen Chen, Ti-Bin Chen, Chih-Chiang Wu
  • Patent number: 12062151
    Abstract: An image processing circuit performs super-resolution (SR) operations. The image processing circuit includes memory to store multiple parameter sets of multiple artificial intelligence (AI) models. The image processing circuit further includes an image guidance module, a parameter decision module, and an SR engine. The image guidance module operates to detect a representative feature in an image sequence including a current frame and past frames within a time window. The parameter decision module operates to adjust parameters of one or more AI models based on a measurement of the representative feature. The SR engine operates to process the current frame using the one or more AI models with the adjusted parameters to thereby generate a high-resolution image for display.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: August 13, 2024
    Assignee: MediaTek Inc.
    Inventors: Ming-En Shih, Ping-Yuan Tsai, Yu-Cheng Tseng, Kuo-Chen Huang, Kuo-Chiang Lo, Hsin-Min Peng, Chun Hsien Wu, Pei-Kuei Tsung, Tung-Chien Chen, Yao-Sheng Wang, Cheng Lung Jen, Chih-Wei Chen, Chih-Wen Goo, Yu-Sheng Lin, Tsu Jui Hsu
  • Patent number: 12040234
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a spacer around the metal gate, and a first interlayer dielectric (ILD) layer around the spacer, performing a plasma treatment process to transform the spacer into a first bottom portion and a first top portion, performing a cleaning process to remove the first top portion, and forming a second ILD layer on the metal gate and the first ILD layer.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: July 16, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Po-Ching Su, Yu-Fu Wang, Min-Hua Tsai, Ti-Bin Chen, Chih-Chiang Wu, Tzu-Chin Wu
  • Patent number: 12040235
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20240210450
    Abstract: The disclosure provides an abnormal current monitoring device and an abnormal current monitoring method. The abnormal current monitoring device includes a first detection circuit which detects a first electrical parameter of a power device based on an i-th level short circuit time, a second detection circuit which detects a second electrical parameter of the power device to generate an i-th level detection signal based on the i-th level short circuit time, and a control circuit which generates an i-th level heat estimation value to determine whether the power device is damaged according to the first electrical parameter, and determines whether the power device is abnormal in operation according to the i-th level detection signal, so as to record the i-th level heat estimation value and the i-th level short circuit time, or adjust the i-th level short circuit time to an i+1-th level short circuit time.
    Type: Application
    Filed: December 27, 2022
    Publication date: June 27, 2024
    Applicant: Industrial Technology Research Institute
    Inventor: Chih-Chiang Wu
  • Publication number: 20230369442
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih- Chiang Wu, Ti-Bin Chen
  • Publication number: 20230369441
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Patent number: 11757016
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: September 12, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Publication number: 20230202452
    Abstract: The disclosure provides a power control device, which comprises a bleeder circuit forming a first discharging path and an aux low-voltage (LV) power supply unit forming a second discharging path. The bleeder circuit is connected with a voltage-regulating capacitor stably maintaining the high-voltage (HV) level from a HV battery. The aux LV power supply unit is connected with the bleeder circuit and the voltage-regulating capacitor in parallel. The aux LV power supply unit provides an aux LV level to the driver, when the power system operates abnormally, the HV level is discharged through the first and second discharging path and/or a third discharging path formed by a driver and a motor.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 29, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Chiang WU, Uma Sankar ROUT, Bang-Yuan LIU, Yun-Huan LI
  • Patent number: 11664425
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: May 30, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Publication number: 20230143658
    Abstract: A power module includes: a GaN transistor, an NMOS transistor, a first capacitor, a first diode and a second diode. The NMOS transistor is electrically connected to the GaN transistor. A negative electrode of the first capacitor is electrically connected to an anode of the first diode and a gate of the GaN transistor. A cathode of the second diode is electrically connected to a gate of the NMOS transistor. The power module further includes a power module control terminal electrically connected to an anode of the first capacitor and an anode of the second diode.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 11, 2023
    Inventors: Ching-Yao LIU, Yueh-Tsung HSIEH, Kuo-Bin WANG, Chih-Chiang WU, Li-Chuan TANG, Wei-Hua CHIENG, Edward Yi CHANG, Stone CHENG
  • Patent number: 11646732
    Abstract: A power module includes: a GaN transistor, an NMOS transistor, a first capacitor, a first diode and a second diode. The NMOS transistor is electrically connected to the GaN transistor. A negative electrode of the first capacitor is electrically connected to an anode of the first diode and a gate of the GaN transistor. A cathode of the second diode is electrically connected to a gate of the NMOS transistor. The power module further includes a power module control terminal electrically connected to an anode of the first capacitor and an anode of the second diode.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: May 9, 2023
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Ching-Yao Liu, Yueh-Tsung Hsieh, Kuo-Bin Wang, Chih-Chiang Wu, Li-Chuan Tang, Wei-Hua Chieng, Edward Yi Chang, Stone Cheng
  • Publication number: 20230093515
    Abstract: A synchronous buck converter using a single gate drive control is provided and includes a drive circuit, a p-type gallium nitride (p-GaN) transistor switch module and an inductor. A gallium nitride power transistor is used as an upper side transistor switch, and a PMOS power transistor is used as a lower side transistor switch in the p-GaN transistor switch module. A gate of the upper side transistor switch and a gate of the lower side transistor switch are coupled to each other and receive a switch signal provided by the drive circuit at the same time. By controlling the on and off of the upper side transistor switch and the lower side transistor switch, the problem of simultaneous activation of the upper and lower side transistor switches can be avoided.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 23, 2023
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Li-Chuan Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Patent number: 11569696
    Abstract: A control method of a minimum power input applicable to a wireless power transfer system including a power transmission unit and at least one power receiving unit is provided. The power transmission unit is electrically connected with a control voltage signal and an input voltage signal and accordingly generates the minimum power input. The power transmission unit transmits the minimum power input wirelessly through a wireless transmission to the at least one power receiving unit for receiving. By adjusting the input voltage signal, the duty ratio and resonant frequency of the control voltage signal, the present invention ensures an optimal power transmission efficiency of the wireless power transmission system. Moreover, parameters of a charge pump reservoir and gate driving circuit can be further designed in view of the trend feedback of its gate drive waveforms so as to optimize the effect of the proposed invention.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: January 31, 2023
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Newton Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Publication number: 20230005795
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a spacer around the metal gate, and a first interlayer dielectric (ILD) layer around the spacer, performing a plasma treatment process to transform the spacer into a first bottom portion and a first top portion, performing a cleaning process to remove the first top portion, and forming a second ILD layer on the metal gate and the first ILD layer.
    Type: Application
    Filed: August 3, 2021
    Publication date: January 5, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Po-Ching Su, Yu-Fu Wang, Min-Hua Tsai, Ti-Bin Chen, Chih-Chiang Wu, Tzu-Chin Wu
  • Publication number: 20220385093
    Abstract: The present disclosure provides a fast charging driver. The fast charging driver is configured to charge a battery of an electronic device. The fast charging driver includes a fast charging circuit and a charging controller. The fast charging circuit includes a first depletion-type GaN transistor, a first enhancement-type field effect transistor, a second depletion-type GaN transistor and a second enhancement-type field effect transistor. The charging controller is configured to control the fast charging circuit to operate in a constant current mode or a constant voltage mode according to a battery level of the battery. By utilizing the first depletion-type GaN transistor and the second depletion-type GaN transistor with a characteristic of a relatively low switching loss, the power consumption during charging the battery by the fast charging driver is decreased to improve the charge speed.
    Type: Application
    Filed: April 27, 2022
    Publication date: December 1, 2022
    Inventors: Edward Yi CHANG, Stone CHENG, Wei-Hua CHIENG, Shyr-Long JENG, Chih-Chiang WU
  • Publication number: 20220285999
    Abstract: A control method of a minimum power input applicable to a wireless power transfer system including a power transmission unit and at least one power receiving unit is provided. The power transmission unit is electrically connected with a control voltage signal and an input voltage signal and accordingly generates the minimum power input. The power transmission unit transmits the minimum power input wirelessly through a wireless transmission to the at least one power receiving unit for receiving. By adjusting the input voltage signal, the duty ratio and resonant frequency of the control voltage signal, the present invention ensures an optimal power transmission efficiency of the wireless power transmission system. Moreover, parameters of a charge pump reservoir and gate driving circuit can be further designed in view of the trend feedback of its gate drive waveforms so as to optimize the effect of the proposed invention.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 8, 2022
    Applicant: National Yang Ming Chiao Tung University
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Newton Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Publication number: 20220223710
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Patent number: 11387824
    Abstract: A voltage-controlled varied frequency pulse width modulator is provided, including a frequency-regulating voltage output device which receives a determining voltage, decides a resonant frequency according to the determining voltage and outputs an oscillation signal having the resonant frequency. A duty-ratio-regulating voltage output device receives the oscillation signal and a reference signal to determine a duty ratio through an inverting closed loop, so as to adjust the oscillation signal to have the duty ratio. By employing the proposed voltage-controlled modulator circuit with tunable frequency and varied pulse width of the present invention, a modulation signal having the determined resonant frequency and duty ratio is obtained. Moreover, the present invention can be further combined with gate drive waveform trend feedback designs to achieve superior power transmission efficiency of a wireless power transmission system to optimize the inventive effect of the present invention.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: July 12, 2022
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Li-Chuan Tang, Chih-Chiang Wu, Yueh-Tsung Hsieh, Ching-Yao Liu, Kuo-Bin Wang