Patents by Inventor Chih-Sheng Lin

Chih-Sheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120337
    Abstract: A semiconductor device structure includes a first dielectric wall, a plurality of first semiconductor layers vertically stacked and extending outwardly from a first side of the first dielectric wall, each first semiconductor layer has a first width, a plurality of second semiconductor layers vertically stacked and extending outwardly from a second side of the first dielectric wall, each second semiconductor layer has a second width, a plurality of third semiconductor layers disposed adjacent the second side of the first dielectric wall, each third semiconductor layer has a third width greater than the second width, a first gate electrode layer surrounding at least three surfaces of each of the first semiconductor layers, the first gate electrode layer having a first conductivity type, and a second gate electrode layer surrounding at least three surfaces of each of the second semiconductor layers, the second gate electrode layer having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Chih-Hung HSIEH, Chun-Sheng LIANG, Wen-Chiang HONG, Chun-Wing YEUNG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240113165
    Abstract: A semiconductor device includes a substrate, a first stack of semiconductor nanosheets, a second stack of semiconductor nanosheets, a gate structure and a first dielectric wall. The substrate includes a first fin and a second fin. The first stack of semiconductor nanosheets is disposed on the first fin. The second stack of semiconductor nanosheets is disposed on the second fin. The gate structure wraps the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall is disposed between the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall includes at least one neck portion between adjacent two semiconductor nanosheets of the first stack.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng Liang, Chih-Hao Chang, Jhon Jhy Liaw
  • Patent number: 11942380
    Abstract: A method includes forming a dummy pattern over test region of a substrate; forming an interlayer dielectric (ILD) layer laterally surrounding the dummy pattern; removing the dummy pattern to form an opening; forming a dielectric layer in the opening; performing a first testing process on the dielectric layer; performing an annealing process to the dielectric layer; and performing a second testing process on the annealed dielectric layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Publication number: 20240088278
    Abstract: A semiconductor structure includes spaced apart first and second fins over a substrate, a separating wall over the substrate and having opposite first and second wall surfaces, multiple first channel features extending away from the first wall surface over the first fin such that the first channel features are spaced apart, multiple second channel features extending away from the second wall surface over the second fin such that the second channel features are spaced apart, two spaced apart first epitaxial structures on the first fin such that each first channel feature interconnects the first epitaxial structures, two spaced apart second epitaxial structures on the second fin such that each second channel feature interconnects the second epitaxial structures, and a dielectric structure including at least one bottom dielectric portion separating at least one of the first and second epitaxial structures from a corresponding first and second fins.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Chun-Sheng LIANG, Chun-Wing YEUNG, Chih-Hao CHANG
  • Publication number: 20240088149
    Abstract: A semiconductor structure includes: a substrate; a first fin and a second fin disposed on the substrate and spaced apart from each other; a dielectric wall disposed on the substrate and having first and second wall surfaces; a third fin disposed on the substrate to be in direct contact with at least one of the first and second fins; a first device disposed on the first fin and including first channel features extending away from the first wall surface; a second device disposed on the second fin and including second channel features extending away from the second wall surface; at least one third device disposed on the third fin and including third channel features; and an isolation feature disposed on the substrate to permit the third device to be electrically isolated from the first and second devices. A method for manufacturing the semiconductor structure is also disclosed.
    Type: Application
    Filed: February 15, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Ming-Heng TSAI, Huang-Chao CHANG, Chun-Sheng LIANG, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240079051
    Abstract: Disclosed is a memory cell including a first transistor having a first terminal coupled to a bit line; a second transistor having a first terminal coupled to a bit line bar; a weight storage circuit coupled between a gate terminal of the first transistor and a gate terminal of the second transistor, storing a weight value, and determining to turn on the first transistor or the second transistor according to the weight value; and a driving circuit coupled to a second terminal of the first transistor, a second terminal of the second transistor, and at least one word line, receiving at least one threshold voltage and at least one input data from the word line, and determining whether to generate an operation current on a path of the turned-on first transistor or the turned-on second transistor according to the threshold voltage and the input data.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 7, 2024
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Tuo-Hung Hou, Fu-Cheng Tsai, Jian-Wei Su, Kuo-Hua Tseng
  • Publication number: 20240079396
    Abstract: A package structure includes a first carrier, a second carrier, and a first electronic device. The first carrier is electrically connected to a first voltage. The second carrier includes a first substrate and a first interconnect structure. The first substrate is in contact with the first carrier, the first interconnect structure is electrically connected to a second voltage, and the first interconnect structure and the first carrier are deposited on two opposite sides of the first substrate. The first electronic device is deposited on the first interconnect structure and away from the first carrier. The first electronic device is in contact with the first interconnect structure.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 7, 2024
    Inventors: Lung-Sheng LIN, Chih-Feng HUANG, Ta-Yung YANG
  • Publication number: 20240078170
    Abstract: A setting method of in-memory computing simulator includes: performing a plurality of test combinations by an in-memory computing device and recording a plurality of first estimation indices corresponding to the plurality of test combinations respectively, wherein each of the plurality of test combinations includes one of a plurality of neural network models and one of a plurality of datasets, executing a simulator according to the plurality of test combinations by a processing device and recording a plurality of second estimation indices corresponding to the plurality of test combinations respectively, wherein the simulator has a plurality of adjustable settings; calculating a correlation sum according to the plurality of first estimation indices and the plurality of second estimation indices by the processing device, and performing an optimal algorithm to search an optimal parameter in the setting space constructed by the plurality of settings so that the correlation sum is maximal.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 7, 2024
    Inventors: Ke-Han Li, Chih-Fan Hsu, Yu-Sheng Lin, Wei-Chao CHEN
  • Publication number: 20240079447
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first stack structure formed over a substrate, and the first stack structure includes a plurality of nanostructures that extend along a first direction. The semiconductor structure includes a second stack structure formed adjacent to the first stack structure, and the second stack structure includes a plurality of nanostructures that extend along the first direction. The semiconductor structure includes a first gate structure formed over the first stack structure, and the first gate structure extends along a second direction. The semiconductor structure also includes a dielectric wall between the first stack structure and the second stack structure, and the dielectric wall includes a low-k dielectric material, and the dielectric wall is connected to the first stack structure and the second stack structure.
    Type: Application
    Filed: February 3, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng LIANG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon-Jhy LIAW
  • Publication number: 20240068124
    Abstract: An apparatus for producing silicon carbide crystal is provided and includes a composite structure formed by a plurality of graphite layers and silicon carbide seed crystals, wherein a density or thickness of each layer of graphite is gradually adjusted to reduce a difference of a thermal expansion coefficient and Young's modulus between the graphite layers and silicon carbide. The composite structure can be stabilized on a top portion or an upper cover of a crucible made of graphite, thereby preventing the silicon carbide crystal from falling off.
    Type: Application
    Filed: August 23, 2023
    Publication date: February 29, 2024
    Inventors: CHIH-LUNG LIN, PO-FEI YANG, CHIE-SHENG LIU, CHUNG-HAO LIN, HSIN-CHEN YEH, HAO-WEN WU
  • Patent number: 11741189
    Abstract: A computing in memory (CIM) cell includes a memory cell circuit, a first semiconductor element, a second semiconductor element, a third semiconductor element, and a fourth semiconductor element. A first terminal of the first semiconductor element receives a bias voltage. A control terminal of the first semiconductor element is coupled to a computing word-line. A control terminal of the second semiconductor element is coupled to a first data node in the memory cell circuit. A second terminal of the third semiconductor element is adapted to receive a reference voltage. A control terminal of the third semiconductor element receives an inverted signal of the computing word-line. A first terminal of the fourth semiconductor element is coupled to a first computing bit-line. A second terminal of the fourth semiconductor element is coupled to a second computing bit-line.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: August 29, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Jian-Wei Su, Tuo-Hung Hou, Sih-Han Li, Fu-Cheng Tsai, Yu-Hui Lin
  • Publication number: 20230267973
    Abstract: According to an exemplary embodiments, the disclosure is directed to a memory circuit which includes not limited to a first half sense amplifier circuit connected to a first plurality of memory cells through a first bit line and configured to receive a unit of analog electrical signal from each of the first plurality of memory cells and to generate a first half sense amplifier output signal corresponding to the first bit line based on a first gain of the half sense amplifier and an accumulation of the units of analog signals, a locking code register circuit configured to receive a locking data and to generate a digital locking sequence, and a source selector circuit configured to receive the digital locking sequence and to generate a first adjustment signal to adjust the first half sense amplifier output signal corresponding to the first bit line by adjusting the first gain.
    Type: Application
    Filed: December 5, 2022
    Publication date: August 24, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Fu-Cheng Tsai, Tuo-Hung Hou, Jian-Wei Su, Yu-Hui Lin, Chih-Ming Lai
  • Publication number: 20230153375
    Abstract: A computing in memory (CIM) cell includes a memory cell circuit, a first semiconductor element, a second semiconductor element, a third semiconductor element, and a fourth semiconductor element. A first terminal of the first semiconductor element receives a bias voltage. A control terminal of the first semiconductor element is coupled to a computing word-line. A control terminal of the second semiconductor element is coupled to a first data node in the memory cell circuit. A second terminal of the third semiconductor element is adapted to receive a reference voltage. A control terminal of the third semiconductor element receives an inverted signal of the computing word-line. A first terminal of the fourth semiconductor element is coupled to a first computing bit-line. A second terminal of the fourth semiconductor element is coupled to a second computing bit-line.
    Type: Application
    Filed: January 18, 2023
    Publication date: May 18, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Jian-Wei Su, Tuo-Hung Hou, Sih-Han Li, Fu-Cheng Tsai, Yu-Hui Lin
  • Patent number: 11599600
    Abstract: A computing in memory (CIM) cell includes a memory cell circuit, a first semiconductor element, a second semiconductor element, and a third semiconductor element. A first terminal of the first semiconductor element is coupled to a first computing bit-line. A control terminal of the first semiconductor element is coupled to a computing word-line. A control terminal of the second semiconductor element is coupled to the memory cell circuit. A first terminal of the second semiconductor element is coupled to a second terminal of the first semiconductor element. A first terminal of the third semiconductor element is coupled to a second terminal of the second semiconductor element. A second terminal of the third semiconductor element is coupled to a second computing bit-line. A control terminal of the third semiconductor element receives a bias voltage.
    Type: Grant
    Filed: September 6, 2020
    Date of Patent: March 7, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Jian-Wei Su, Tuo-Hung Hou, Sih-Han Li, Fu-Cheng Tsai, Yu-Hui Lin
  • Publication number: 20220413801
    Abstract: A configurable computing unit within memory including a first input transistor, a first weight transistor, a first resistor, a second input transistor, a second weight transistor, and a second resistor is provided. The first input transistor, the first weight transistor, and the first resistor are coupled in series between a first readout bit line and a common signal line. The first input transistor is coupled to a first input bit line, and the first weight transistor receives a first weight bit. The second input transistor, the second weight transistor, and the second resistor are coupled in series between the first readout bit line and the common signal line. The second input transistor is coupled to a second input bit line, and the second weight transistor receives the second weight bit.
    Type: Application
    Filed: February 24, 2022
    Publication date: December 29, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Jian-Wei Su, Chih-Sheng Lin, Peng-I Mei, Sih-Han Li, Shyh-Shyuan Sheu, Jheng Yang Dai
  • Publication number: 20220318605
    Abstract: A data feature augmentation system and method for a low-precision neural network are provided. The data feature augmentation system includes a first time difference unit. The first time difference unit includes a first sample-and-hold circuit and a subtractor. The first sample-and-hold circuit is used for receiving an input signal and obtaining a first signal according to the input signal. The first signal is related to a first leakage rate of the first sample-and-hold circuit and the first signal is the signal generated by delaying the input signal by one time unit. The subtractor is used for performing subtraction on the input signal and the first signal to obtain a time difference signal. The input signal and the time difference signal are inputted to the low-precision neural network.
    Type: Application
    Filed: July 26, 2021
    Publication date: October 6, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Fu-Cheng TSAI, Yi-Ching KUO, Chih-Sheng LIN, Shyh-Shyuan SHEU, Tay-Jyi LIN, Shih-Chieh CHANG
  • Patent number: 11423983
    Abstract: A memory device for in-memory computation includes data channels, a memory cell array, a maximum accumulated weight generating array, a minimum accumulated weight generating array, a reference generator and a comparator. The data channels are selectively enabled according to data input. The memory cell array generates an accumulated data weight value according to the quantity of enabled data channels, a first resistance and a second resistance. The maximum accumulated weight generating array generates a maximum accumulated weight value according to the quantity of enabled data channels and the first resistance. The minimum accumulated weight generating array generates a minimum accumulated weight value according to the quantity of enabled data channels and the second resistance. The reference generator generates reference value(s) according to the maximum and minimum accumulated weight values.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: August 23, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Sheng Lin, Sih-Han Li, Yu-Hui Lin, Jian-Wei Su
  • Publication number: 20220223202
    Abstract: A memory device for in-memory computation includes data channels, a memory cell array, a maximum accumulated weight generating array, a minimum accumulated weight generating array, a reference generator and a comparator. The data channels are selectively enabled according to data input. The memory cell array generates an accumulated data weight value according to the quantity of enabled data channels, a first resistance and a second resistance. The maximum accumulated weight generating array generates a maximum accumulated weight value according to the quantity of enabled data channels and the first resistance. The minimum accumulated weight generating array generates a minimum accumulated weight value according to the quantity of enabled data channels and the second resistance. The reference generator generates reference value(s) according to the maximum and minimum accumulated weight values.
    Type: Application
    Filed: May 17, 2021
    Publication date: July 14, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Sheng LIN, Sih-Han LI, Yu-Hui LIN, Jian-Wei SU
  • Patent number: 11286453
    Abstract: Provided is a continuous microalgae culture module, including an outdoor culture unit, a high-density culture unit, a pigment induced unit, and a harvesting unit. A method of culturing microalgae containing macular pigment is also provided, including sequentially culturing microalgae with medium in the outdoor culture unit and the high-density culture unit, producing macular pigment in the pigment induced unit through different light irradiation, and collecting the microalgal biomass containing macular pigment in the harvesting unit.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 29, 2022
    Assignee: National Chiao Tung University
    Inventors: Chih-Sheng Lin, Chiu-Mei Kuo, Yi-Chun Yang, Wen-Xin Zhang
  • Publication number: 20210397675
    Abstract: A computing in memory (CIM) cell includes a memory cell circuit, a first semiconductor element, a second semiconductor element, and a third semiconductor element. A first terminal of the first semiconductor element is coupled to a first computing bit-line. A control terminal of the first semiconductor element is coupled to a computing word-line. A control terminal of the second semiconductor element is coupled to the memory cell circuit. A first terminal of the second semiconductor element is coupled to a second terminal of the first semiconductor element. A first terminal of the third semiconductor element is coupled to a second terminal of the second semiconductor element. A second terminal of the third semiconductor element is coupled to a second computing bit-line. A control terminal of the third semiconductor element receives a bias voltage.
    Type: Application
    Filed: September 6, 2020
    Publication date: December 23, 2021
    Applicant: Industrial Technology Research Institute
    Inventors: Chih-Sheng Lin, Jian-Wei Su, Tuo-Hung Hou, Sih-Han Li, Fu-Cheng Tsai, Yu-Hui Lin