Patents by Inventor Chih-Tsung Lee

Chih-Tsung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9708706
    Abstract: A thin film deposition system and method provide for multiple target assemblies that may be separately powered. Each target assembly includes a target and associated magnet or set of magnets. The disclosure provides a tunable film profile produced by multiple power sources that separately power the target arrangements. The relative amounts of power supplied to the target arrangements may be customized to provide a desired film and may be varied in time to produce a film with varied characteristics.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-En Kao, Ming-Chin Tsai, You-Hua Chou, Chen-Chia Chiang, Chih-Tsung Lee, Ming-Shiou Kuo
  • Patent number: 9502280
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Publication number: 20160124542
    Abstract: A capacitive touch panel and a method of making it are provided. The method first sputters a layer of TCO coatings on a transparent substrate to form a conductive portion and a base portion, and then coats a layer of transparent and insulating coatings on the conductive portion to form a blocking member. Another layer of TCO coatings is also sputtered on the conductive portion, the base portion, and the blocking member to form a first detection electrode assembly and a second detection electrode assembly. The first detection electrode assembly is arranged in a first axial direction with part thereof below the blocking member, while the second detection electrode assembly is arranged in a second axial direction, and part of the second detection electrode assembly covers the blocking member without contacting the first detection electrode assembly to make the first and the second detection electrode assemblies disconnect with each other.
    Type: Application
    Filed: May 13, 2015
    Publication date: May 5, 2016
    Inventors: CHIH-TSUNG LEE, YIH-JER LIN, CHI-KUANG LAI, REN-YANG CHAO
  • Patent number: 9287154
    Abstract: Embodiments of an ultraviolet (UV) curing system for treating a semiconductor substrate such as a wafer are disclosed. The curing system generally includes a processing chamber, a wafer support for holding a wafer in the chamber, a UV radiation source disposed above the chamber, and a UV transparent window interspersed between the radiation source and wafer support. In one embodiment, the wafer support is provided by a belt conveyor operable to transport wafers through the chamber during UV curing. In another embodiment, the UV radiation source is a movable lamp unit that travels across the top of the chamber for irradiating the wafer. In another embodiment, the UV transparent window includes a UV radiation modifier that reduces the intensity of UV radiation on portions of the wafer positioned below the modifier. Various embodiments enhance wafer curing uniformity by normalizing UV intensity levels on the wafer.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming Huei Lien, Chia-Ho Chen, Shu-Fen Wu, Chih-Tsung Lee, You-Hua Chou
  • Patent number: 9234278
    Abstract: The present disclosure relates to a guiding element for guiding gas flow within a chamber. The guiding element includes a structure, one or more inlets, an outlet, and a transportation region. The one or more inlets are formed on a first side of the structure. The inlets have inlet sizes selected according to a removal rate and to mitigate gas flow variations within the chamber. The outlet is on a second side of the structure, opposite the first side of the structure. The outlet has an outlet size selected according to the removal rate. The transportation region is within the structure and couples or connects the inlets to the outlet.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: January 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Hua Chou, Chih-Tsung Lee, Chia-Ho Chen, Chin-Hsiang Lin
  • Patent number: 9218998
    Abstract: An electrostatic chuck for clamping a warped workpiece has a clamping surface comprising a dielectric layer. The dielectric layer has a field and one or more zones formed of differing dielectric materials. One or more electrodes are coupled to a power supply, and a controller controls a clamping voltage supplied to the one or more electrodes via the power supply. An electrostatic attraction force associated with each of the field and one or more zones of the dielectric layer of the electrostatic chuck is induced, wherein the electrostatic attraction force varies based on the dielectric material of each of the field and one or more zones. The electrostatic attraction force is greater in the one or more zones than in the field, therein attracting warped regions of the workpiece to the clamping surface and clamping the warped workpiece to the clamping surface across a surface of the warped workpiece.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: December 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ho Chen, Ming Huei Lien, Shu-Fen Wu, Chih-Tsung Lee, You-Hua Chou
  • Patent number: 9214514
    Abstract: Embodiments that relate to mechanisms for providing a stable dislocation profile are provided. A semiconductor substrate having a gate stack is provided. An opening is formed adjacent to a side of the gate stack. A first part of an epitaxial growth structure is formed in the opening. A second part of the epitaxial growth structure is formed in the opening. The first part and the second part of the epitaxial growth structure are formed along different directions.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Hao Hong, Shiu-Ko Jangjian, Chih-Tsung Lee, Miao-Cheng Liao
  • Publication number: 20150279632
    Abstract: A device includes a pedestal. The pedestal includes a ground electrode, a central portion, and a peripheral portion. The ground electrode includes a top surface from which the peripheral portion is projected, thereby having a height difference between the central portion and the peripheral portion.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: KUN-MO LIN, KEITH KUANG-KUO KOAI, CHIH-TSUNG LEE, VICTOR Y. LU, YI-HUNG LIN
  • Publication number: 20150179502
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang Hsiang Ko, Chen-Ming Huang
  • Publication number: 20150132913
    Abstract: Embodiments that relate to mechanisms for providing a stable dislocation profile are provided. A semiconductor substrate having a gate stack is provided. An opening is formed adjacent to a side of the gate stack. A first part of an epitaxial growth structure is formed in the opening. A second part of the epitaxial growth structure is formed in the opening. The first part and the second part of the epitaxial growth structure are formed along different directions.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Min-Hao HONG, Shiu-Ko JANGJIAN, Chih-Tsung LEE, Miao-Cheng LIAO
  • Patent number: 9006070
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Patent number: 8953298
    Abstract: A workpiece transfer system has a plurality of joints having a bearing and a primary and secondary transformer coil, wherein power provided to the primary transformer coil and secondary transformer coil of each joint produces mutual inductance between the primary and secondary transformer coil of the respective joint. A first pair of arms are rotatably coupled to a blade by a first pair of the joints, wherein the primary transformer coil of each of the first pair of joints is operably coupled to the first pair of arms, and the secondary transformer coil of each of the first pair of joints is operably coupled to the blade and an electrode beneath a dielectric workpiece retaining surface of the blade. The electrode is contactlessly energized through the transformer coils of the joint and the blade can chuck and de-chuck a workpiece by reversing current directions and by voltage adjustment.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-En Kao, You-Hua Chou, Chih-Tsung Lee, Ming-Shiou Kuo
  • Publication number: 20150016011
    Abstract: An electrostatic chuck for clamping a warped workpiece has a clamping surface comprising a dielectric layer. The dielectric layer has a field and one or more zones formed of differing dielectric materials. One or more electrodes are coupled to a power supply, and a controller controls a clamping voltage supplied to the one or more electrodes via the power supply. An electrostatic attraction force associated with each of the field and one or more zones of the dielectric layer of the electrostatic chuck is induced, wherein the electrostatic attraction force varies based on the dielectric material of each of the field and one or more zones. The electrostatic attraction force is greater in the one or more zones than in the field, therein attracting warped regions of the workpiece to the clamping surface and clamping the warped workpiece to the clamping surface across a surface of the warped workpiece.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 15, 2015
    Inventors: Chia-Ho Chen, Ming Huei Lien, Shu-Fen Wu, Chih-Tsung Lee, You-Hua Chou
  • Patent number: 8916480
    Abstract: The present disclosure provides for methods and systems for controlling profile uniformity of a chemical vapor deposition (CVD) film. A method includes depositing a first layer on a substrate by CVD with a first shower head, the first layer having a first profile, and depositing a second layer over the first layer by CVD with a second shower head, the second layer having a second profile. The combined first layer and second layer have a third profile, and the first profile, the second profile, and the third profile are different from one another.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Shiou Kuo, Chih-Tsung Lee, You-Hua Chou, Ming-Chin Tsai, Chia-Ho Chen, Chin-Hsiang Lin
  • Patent number: 8902561
    Abstract: An electrostatic chuck for clamping a warped workpiece has a clamping surface comprising a dielectric layer. The dielectric layer has a field and one or more zones formed of differing dielectric materials. One or more electrodes are coupled to a power supply, and a controller controls a clamping voltage supplied to the one or more electrodes via the power supply. An electrostatic attraction force associated with each of the field and one or more zones of the dielectric layer of the electrostatic chuck is induced, wherein the electrostatic attraction force varies based on the dielectric material of each of the field and one or more zones. The electrostatic attraction force is greater in the one or more zones than in the field, therein attracting warped regions of the workpiece to the clamping surface and clamping the warped workpiece to the clamping surface across a surface of the warped workpiece.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ho Chen, Ming Huei Lien, Shu-Fen Wu, Chih-Tsung Lee, You-Hua Chou
  • Patent number: 8796105
    Abstract: A method for depositing a polysilazane on a semiconductor wafer is provided. The method includes steps of disposing a silazane onto the semiconductor wafer, and heating the silazane to form the polysilazane on the semiconductor wafer. An apparatus for preparing a polysilazane on a semiconductor wafer is also provided.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: You-Hua Chou, Chih-Tsung Lee, Min-Hao Hong, Ming-Huei Lien, Chih-Jen Wu, Chen-Ming Huang
  • Publication number: 20140179071
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Publication number: 20140162534
    Abstract: A polishing system for polishing a semiconductor wafer includes a wafer support for holding the semiconductor wafer, and a first polishing pad for polishing a region of the semiconductor wafer. The semiconductor wafer has a first diameter, and the first polishing pad has a second diameter shorter than the first diameter.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Chi LIN, Kun-Tai WU, You-Hua CHOU, Chih-Tsung LEE, Min Hao HONG, Chih-Jen WU, Chen-Ming HUANG, Soon-Kang HUANG, Chin-Hsiang CHANG, Chih-Yuan YANG
  • Patent number: 8692299
    Abstract: An integrated circuit device and a process for making the integrated circuit device. The integrated circuit device including a substrate having a trench formed therein, a first layer of isolation material occupying the trench, a second layer of isolation material formed over the first layer of isolation material, an epitaxially-grown silicon layer on the substrate and horizontally adjacent the second layer of isolation material, and a gate structure formed on the epitaxially-grown silicon, the gate structure defining a channel.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang Hsiang Ko, Chen-Ming Huang
  • Publication number: 20140054653
    Abstract: An integrated circuit device and a process for making the integrated circuit device. The integrated circuit device including a substrate having a trench formed therein, a first layer of isolation material occupying the trench, a second layer of isolation material formed over the first layer of isolation material, an epitaxially-grown silicon layer on the substrate and horizontally adjacent the second layer of isolation material, and a gate structure formed on the epitaxially-grown silicon, the gate structure defining a channel.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang