Patents by Inventor Chih-Yu Hsu
Chih-Yu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12294030Abstract: A semiconductor structure includes a first pair of source/drain features (S/D), a first stack of channel layers connected to the first pair of S/D, a second pair of S/D, and a second stack of channel layers connected to the second pair of S/D. The first pair of S/D each include a first epitaxial layer having a first dopant, a second epitaxial layer having a second dopant and disposed over the first epitaxial layer and connected to the first stack of channel layers, and a third epitaxial layer having a third dopant and disposed over the second epitaxial layer. The second pair of S/D each include a fourth epitaxial layer having a fourth dopant and connected to the second stack of channel layers, and a fifth epitaxial layer having a fifth dopant and disposed over the fourth epitaxial layer. The first dopant through the fourth dopant are of different species.Type: GrantFiled: May 24, 2024Date of Patent: May 6, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
-
Patent number: 12272557Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.Type: GrantFiled: August 1, 2023Date of Patent: April 8, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
-
Publication number: 20250107170Abstract: Methods for isolating two adjacent transistors are disclosed. A substrate has a first semiconducting fin on a first region and a second semiconducting fin on a second region, and the first semiconducting fin and the second semiconducting fin contact each other at a jog region. A dummy gate within or adjacent the jog region is removed to expose a portion of the first semiconducting fin and form an isolation volume. Etching is performed to remove the exposed portion of the first semiconducting fin and create a trench in the substrate. The trench and the isolation volume are filled with at least one dielectric material to form an electrically isolating structure between the first region and the second region. Additional dummy gates in each region can be removed and replaced with an electrically conductive material to form two adjacent transistors electrically isolated from each other.Type: ApplicationFiled: September 25, 2023Publication date: March 27, 2025Inventors: Yun-Chen WU, Tzu-Ging LIN, Jih-Jse LIN, Jun-Ye LIU, Chun-Liang LAI, Chih-Yu HSU
-
Patent number: 12255104Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.Type: GrantFiled: August 2, 2023Date of Patent: March 18, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
-
Patent number: 12171091Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.Type: GrantFiled: August 9, 2023Date of Patent: December 17, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20240413221Abstract: A device includes a semiconductor substrate, a fin structure on the semiconductor substrate, a gate structure on the fin structure, and a pair of source/drain features on both sides of the gate structure. The gate structure includes an interfacial layer on the fin structure, a gate dielectric layer on the interfacial layer, and a gate electrode layer of a conductive material on and directly contacting the gate dielectric layer. The gate dielectric layer includes nitrogen element.Type: ApplicationFiled: July 11, 2024Publication date: December 12, 2024Inventors: Chia-Wei Chen, Chih-Yu Hsu, Hui-Chi Chen, Shan-Mei Liao, Jian-Hao Chen, Cheng-Hao Hou, Huang-Chin Chen, Cheng Hong Yang, Shih-Hao Lin, Tsung-Da Lin, Da-Yuan Lee, Kuo-Feng Yu, Feng-Cheng Yang, Chi On Chui, Yen-Ming Chen
-
Publication number: 20240387670Abstract: A semiconductor device and related method for forming a gate structure. In some embodiments, a semiconductor device includes a fin extending from a substrate. In some cases, the fin includes a plurality of semiconductor channel layers. In some examples, the semiconductor device further includes a gate dielectric surrounding each of the plurality of semiconductor channel layers. In some embodiments, a first thickness of the gate dielectric disposed on a top surface of a topmost semiconductor channel layer of the plurality of semiconductor channel layers is greater than a second thickness of the gate dielectric disposed on a surface of another semiconductor channel layer disposed beneath the topmost semiconductor channel layer.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Kuo-Feng Yu, Jiao-Hao Chen, Chih-Yu Hsu, Chih-Wei Lee, Chien-Yuan Chen
-
Publication number: 20240381608Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
-
Publication number: 20240379366Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.Type: ApplicationFiled: July 22, 2024Publication date: November 14, 2024Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
-
Publication number: 20240379365Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.Type: ApplicationFiled: July 22, 2024Publication date: November 14, 2024Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
-
Patent number: 12142657Abstract: A semiconductor device and related method for forming a gate structure. In some embodiments, a semiconductor device includes a fin extending from a substrate. In some cases, the fin includes a plurality of semiconductor channel layers. In some examples, the semiconductor device further includes a gate dielectric surrounding each of the plurality of semiconductor channel layers. In some embodiments, a first thickness of the gate dielectric disposed on a top surface of a topmost semiconductor channel layer of the plurality of semiconductor channel layers is greater than a second thickness of the gate dielectric disposed on a surface of another semiconductor channel layer disposed beneath the topmost semiconductor channel layer.Type: GrantFiled: April 13, 2022Date of Patent: November 12, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuo-Feng Yu, Jiao-Hao Chen, Chih-Yu Hsu, Chih-Wei Lee, Chien-Yuan Chen
-
Publication number: 20240347642Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.Type: ApplicationFiled: June 26, 2024Publication date: October 17, 2024Inventors: Shih-Hao Lin, Chong-De Lien, Chih-Chuan Yang, Chih-Yu Hsu, Ming-Shuan Li, Hsin-Wen Su
-
Patent number: 12106940Abstract: A method for storage and supply of a F3NO-free FNO-containing gas comprises the steps of storing the F3NO-free FNO-containing gas in a NiP coated steel cylinder with a polished inner surface, releasing the F3NO-free FNO-containing gas from the cylinder to a manifold assembly by activating a cylinder valve in fluid communication with the cylinder and the manifold assembly, de-pressurizing the F3NO-free FNO-containing gas by activating a pressure regulator in the manifold assembly so as to divide the manifold assembly into a first pressure zone upstream of the pressure regulator and a second pressure zone downstream of the pressure regulator, and feeding the de-pressurized F3NO-free FNO-containing gas to a target reactor downstream of the second pressure zone.Type: GrantFiled: January 13, 2022Date of Patent: October 1, 2024Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventors: Ayaka Nishiyama, Jiro Yokota, Chih-yu Hsu, Peng Shen, Nathan Stafford
-
Publication number: 20240313119Abstract: A semiconductor structure includes a first pair of source/drain features (S/D), a first stack of channel layers connected to the first pair of S/D, a second pair of S/D, and a second stack of channel layers connected to the second pair of S/D. The first pair of S/D each include a first epitaxial layer having a first dopant, a second epitaxial layer having a second dopant and disposed over the first epitaxial layer and connected to the first stack of channel layers, and a third epitaxial layer having a third dopant and disposed over the second epitaxial layer. The second pair of S/D each include a fourth epitaxial layer having a fourth dopant and connected to the second stack of channel layers, and a fifth epitaxial layer having a fifth dopant and disposed over the fourth epitaxial layer. The first dopant through the fourth dopant are of different species.Type: ApplicationFiled: May 24, 2024Publication date: September 19, 2024Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
-
Patent number: 12074206Abstract: A device includes a semiconductor substrate, a fin structure on the semiconductor substrate, a gate structure on the fin structure, and a pair of source/drain features on both sides of the gate structure. The gate structure includes an interfacial layer on the fin structure, a gate dielectric layer on the interfacial layer, and a gate electrode layer of a conductive material on and directly contacting the gate dielectric layer. The gate dielectric layer includes nitrogen element.Type: GrantFiled: August 30, 2021Date of Patent: August 27, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia-Wei Chen, Chih-Yu Hsu, Hui-Chi Chen, Shan-Mei Liao, Jian-Hao Chen, Cheng-Hao Hou, Huang-Chin Chen, Cheng Hong Yang, Shih-Hao Lin, Tsung-Da Lin, Da-Yuan Lee, Kuo-Feng Yu, Feng-Cheng Yang, Chi On Chui, Yen-Ming Chen
-
Patent number: 12041760Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.Type: GrantFiled: August 9, 2022Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
-
Patent number: 12040405Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.Type: GrantFiled: May 13, 2021Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao Lin, Chong-De Lien, Chih-Chuan Yang, Chih-Yu Hsu, Ming-Shuan Li, Hsin-Wen Su
-
Patent number: 12040235Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.Type: GrantFiled: July 21, 2022Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
-
Patent number: 12022643Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.Type: GrantFiled: September 29, 2020Date of Patent: June 25, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
-
Patent number: 11996484Abstract: A semiconductor device includes a substrate, two source/drain features over the substrate, channel layers connecting the two source/drain features, and a gate structure wrapping around each of the channel layers. Each of the two source/drain features include a first epitaxial layer, a second epitaxial layer over the first epitaxial layer, and a third epitaxial layer on inner surfaces of the second epitaxial layer. The channel layers directly interface with the second epitaxial layers and are separated from the third epitaxial layers by the second epitaxial layers. The first epitaxial layers include a first semiconductor material with a first dopant. The second epitaxial layers include the first semiconductor material with a second dopant. The second dopant has a higher mobility than the first dopant.Type: GrantFiled: May 13, 2021Date of Patent: May 28, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen