Patents by Inventor Chih-Yu Hsu

Chih-Yu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250067954
    Abstract: An optical member driving mechanism is provided. The optical member driving mechanism includes a first movable portion used for connecting an optical element, a fixed portion, a first driving assembly used for driving the first movable portion to rotate relative to the fixed portion, and a guiding assembly having a first intermediate element. The first movable portion is movable relative to the fixed portion. The guiding assembly is used for applying a first stabilized force to the first movable portion for making the first intermediate element be in contact with the first movable portion or the fixed portion. The first movable portion is rotatable relative to the fixed portion.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Inventors: Chih-Wei WENG, Chao-Chang HU, Yueh-Lin LEE, Chen-Hsien FAN, Chien-Yu KAO, Chia-Ching HSU, Sung-Mao TSAI, Sin-Jhong SONG
  • Patent number: 12224183
    Abstract: A package including a first carrier, a seed layer, wires, a die and a molding material is provided. The first carrier is removed to expose the seed layer after disposing a second carrier on the molding material, then the seed layer is removed to expose the wires, and a gold layer is deposited on each of the wires by immersion gold plating, finally a semiconductor device is obtained. The gold layer is provided to protect the wires from oxidation and improve solder joint reliability.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: February 11, 2025
    Assignee: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Shrane-Ning Jenq, Wen-Cheng Hsu, Chen-Yu Wang, Chih-Ming Kuo, Chwan-Tyaw Chen, Lung-Hua Ho
  • Patent number: 12224285
    Abstract: An integrated circuit includes a set of active regions, a first contact, a set of gates, a first and second conductive line and a first and second via. The set of active regions extends in a first direction, and is on a first level. The first contact extends in a second direction, is on a second level, and overlaps at least a first active region. The set of gates extends in the second direction, overlaps the set of active regions, and is on a third level. The first conductive line and the second conductive line extend in the first direction, overlap the first contact, and are on a fourth level. The first via electrically couples the first contact and the first conductive line together. The second via electrically couples the first contact and the second conductive line together.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 11, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Wei Hsu, Shun Li Chen, Ting Yu Chen, Hui-Zhong Zhuang, Chih-Liang Chen
  • Patent number: 12222576
    Abstract: An optical element driving mechanism includes a movable assembly, a fixed assembly, and a driving assembly. The movable assembly is configured to be connected to an optical element. The movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly in a range of motion. The optical element driving mechanism further includes a positioning assembly configured to position the movable assembly at a predetermined position relative to the fixed assembly when the driving assembly is not operating.
    Type: Grant
    Filed: November 9, 2023
    Date of Patent: February 11, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Kuen-Wang Tsai, Liang-Ting Ho, Chao-Hsi Wang, Chih-Wei Weng, He-Ling Chang, Che-Wei Chang, Sheng-Zong Chen, Ko-Lun Chao, Min-Hsiu Tsai, Shu-Shan Chen, Jungsuck Ryoo, Mao-Kuo Hsu, Guan-Yu Su
  • Publication number: 20250044270
    Abstract: A system for notifying environmental pollution status includes wireless environment sensing devices and a portable wireless environmental pollution status notification device. The wireless environment sensing devices, respectively arranged in the different sensing locations of a physical environment, respectively store the sensing locations and respectively sense pollution related information corresponding to the different sensing locations to output the pollution related information and the sensing locations corresponding thereto. The portable wireless environmental pollution status notification device, wirelessly connected to the plurality of wireless environment sensing devices and located in the physical environment, receives the pollution related information and the sensing locations corresponding thereto and generates notification signals based on the pollution related information and the sensing locations corresponding thereto.
    Type: Application
    Filed: July 15, 2024
    Publication date: February 6, 2025
    Inventors: CHIA-JUI YANG, HERMAN CHUNGHWA RAO, CHUN-CHIEH KUO, HUA-PEI CHIANG, SHUI-SHU HSIAO, ZHENG-XIANG CHANG, CHYI-DAR JANG, TSUNG-JEN WANG, CHE-YU LIAO, CHIH-MIN CHAN, TENG-CHIEH YANG, CHANG-HUNG HSU
  • Publication number: 20250047096
    Abstract: An electrostatic discharge circuit includes a discharge switch, a first trigger circuit and a second trigger circuit. A first terminal of the discharge switch is coupled to a first power domain, and a second terminal of the discharge switch is coupled to a second power domain. The first trigger circuit is coupled between the first terminal and a control terminal of the discharge switch. The second trigger circuit is coupled between the second terminal and the control terminal. When an electrostatic discharge voltage occurs in the first power domain, the second trigger circuit is configured to form a conduction voltage between the second terminal and the control terminal to turn on the discharge switch. When the electrostatic discharge voltage occurs in the second power domain, the second trigger circuit is configured to short the second terminal and the control terminal to turn on the discharge switch.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 6, 2025
    Inventors: Shih-Yu WANG, Wen-Tsung HUANG, Chih-Wei HSU
  • Publication number: 20250035603
    Abstract: A positioning pollutant-measuring system includes a cloud server, a wireless base station, an automatic moving vehicle, and a positioning pollutant-measuring device. The automatic moving vehicle carries the positioning pollutant-measuring device and passes through different locations. The positioning pollutant-measuring device receives location related parameters from the wireless base station and measures the air flow rates or the air humidity of the different locations to adjust a resolution for measuring pollutants corresponding to the different locations.
    Type: Application
    Filed: June 24, 2024
    Publication date: January 30, 2025
    Inventors: Chia-Jui YANG, HERMAN CHUNGHWA RAO, Chun-Chieh KUO, Hua-Pei CHIANG, Shui-Shu HSIAO, Zheng-Xiang CHANG, Chyi-Dar JANG, Tsung-Jen WANG, Che-Yu LIAO, Chih-Min CHAN, Teng-Chieh YANG, CHANG-HUNG HSU
  • Patent number: 12202935
    Abstract: A resin compound has a structure represented by a chemical formula (I): In the chemical formula (I), each R1 independently represents a C1-C20 alkylene group or a C7-C40 alkylarylene group, and R1 are the same or different from each other; n independently represents an integer of 1-4; each R2 independently represents a C1-C20 alkyl group or a C2-C20 terminal alkenyl group, and R2 are the same or different from each other. When at least one of R1 represents a C1-C20 alkylene group, at least one of R2 is a C2-C20 terminal alkenyl group.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: January 21, 2025
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Meei-Yu Hsu, Chih-Hao Lin, Kai-Chi Chen, Yi-Chun Chen
  • Patent number: 12204163
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: February 5, 2024
    Date of Patent: January 21, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20250020879
    Abstract: A communication assembly is configured to be disposed on a substrate, and the communication assembly includes an optical fiber communication module and a heat dissipation shielding module. The optical fiber communication module is configured to be disposed on the substrate. The heat dissipation shielding module is configured for cooling the optical fiber communication module and protecting the optical fiber communication module from external electromagnetic interference, and the heat dissipation shielding module includes a shielding cover and a heat sink. The shielding cover is configured to be disposed on the substrate. The shielding cover and the substrate together surround and form an accommodation space. The optical fiber communication module is located in the accommodation space, and the shielding cover is in thermal contact with the optical fiber communication module. The heat sink and the shielding cover are made of a single piece.
    Type: Application
    Filed: November 9, 2023
    Publication date: January 16, 2025
    Applicant: GEMTEK TECHNOLOGY CO., LTD.
    Inventors: Yen-Yu LAI, Chih Yao HSU
  • Patent number: 12171091
    Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.
    Type: Grant
    Filed: August 9, 2023
    Date of Patent: December 17, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240413221
    Abstract: A device includes a semiconductor substrate, a fin structure on the semiconductor substrate, a gate structure on the fin structure, and a pair of source/drain features on both sides of the gate structure. The gate structure includes an interfacial layer on the fin structure, a gate dielectric layer on the interfacial layer, and a gate electrode layer of a conductive material on and directly contacting the gate dielectric layer. The gate dielectric layer includes nitrogen element.
    Type: Application
    Filed: July 11, 2024
    Publication date: December 12, 2024
    Inventors: Chia-Wei Chen, Chih-Yu Hsu, Hui-Chi Chen, Shan-Mei Liao, Jian-Hao Chen, Cheng-Hao Hou, Huang-Chin Chen, Cheng Hong Yang, Shih-Hao Lin, Tsung-Da Lin, Da-Yuan Lee, Kuo-Feng Yu, Feng-Cheng Yang, Chi On Chui, Yen-Ming Chen
  • Publication number: 20240387670
    Abstract: A semiconductor device and related method for forming a gate structure. In some embodiments, a semiconductor device includes a fin extending from a substrate. In some cases, the fin includes a plurality of semiconductor channel layers. In some examples, the semiconductor device further includes a gate dielectric surrounding each of the plurality of semiconductor channel layers. In some embodiments, a first thickness of the gate dielectric disposed on a top surface of a topmost semiconductor channel layer of the plurality of semiconductor channel layers is greater than a second thickness of the gate dielectric disposed on a surface of another semiconductor channel layer disposed beneath the topmost semiconductor channel layer.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Kuo-Feng Yu, Jiao-Hao Chen, Chih-Yu Hsu, Chih-Wei Lee, Chien-Yuan Chen
  • Publication number: 20240379366
    Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
  • Publication number: 20240379365
    Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
  • Publication number: 20240381608
    Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 12142657
    Abstract: A semiconductor device and related method for forming a gate structure. In some embodiments, a semiconductor device includes a fin extending from a substrate. In some cases, the fin includes a plurality of semiconductor channel layers. In some examples, the semiconductor device further includes a gate dielectric surrounding each of the plurality of semiconductor channel layers. In some embodiments, a first thickness of the gate dielectric disposed on a top surface of a topmost semiconductor channel layer of the plurality of semiconductor channel layers is greater than a second thickness of the gate dielectric disposed on a surface of another semiconductor channel layer disposed beneath the topmost semiconductor channel layer.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: November 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Feng Yu, Jiao-Hao Chen, Chih-Yu Hsu, Chih-Wei Lee, Chien-Yuan Chen
  • Publication number: 20240347642
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.
    Type: Application
    Filed: June 26, 2024
    Publication date: October 17, 2024
    Inventors: Shih-Hao Lin, Chong-De Lien, Chih-Chuan Yang, Chih-Yu Hsu, Ming-Shuan Li, Hsin-Wen Su
  • Patent number: 12106940
    Abstract: A method for storage and supply of a F3NO-free FNO-containing gas comprises the steps of storing the F3NO-free FNO-containing gas in a NiP coated steel cylinder with a polished inner surface, releasing the F3NO-free FNO-containing gas from the cylinder to a manifold assembly by activating a cylinder valve in fluid communication with the cylinder and the manifold assembly, de-pressurizing the F3NO-free FNO-containing gas by activating a pressure regulator in the manifold assembly so as to divide the manifold assembly into a first pressure zone upstream of the pressure regulator and a second pressure zone downstream of the pressure regulator, and feeding the de-pressurized F3NO-free FNO-containing gas to a target reactor downstream of the second pressure zone.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: October 1, 2024
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Ayaka Nishiyama, Jiro Yokota, Chih-yu Hsu, Peng Shen, Nathan Stafford
  • Publication number: 20240313119
    Abstract: A semiconductor structure includes a first pair of source/drain features (S/D), a first stack of channel layers connected to the first pair of S/D, a second pair of S/D, and a second stack of channel layers connected to the second pair of S/D. The first pair of S/D each include a first epitaxial layer having a first dopant, a second epitaxial layer having a second dopant and disposed over the first epitaxial layer and connected to the first stack of channel layers, and a third epitaxial layer having a third dopant and disposed over the second epitaxial layer. The second pair of S/D each include a fourth epitaxial layer having a fourth dopant and connected to the second stack of channel layers, and a fifth epitaxial layer having a fifth dopant and disposed over the fourth epitaxial layer. The first dopant through the fourth dopant are of different species.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen