Patents by Inventor Chin-Chieh YANG

Chin-Chieh YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170033159
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate and designed for data storage. The resistive element includes a resistive material layer. The resistive element further includes first and second electrodes interposed by the resistive material layer. The resistive element further includes a field effect transistor (FET) formed on the semiconductor substrate and coupled with the resistive memory element, wherein the FET includes asymmetric source and drain, the drain having a higher doping concentration than the source. The resistive memory element is coupled with the drain.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 9553265
    Abstract: The present disclosure relates to an integrated circuit, which includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a lower metal layer, an intermediate metal layer disposed over the lower metal layer, and an upper metal layer disposed over the intermediate metal layer. An upper surface of the lower metal layer and a lower surface of the intermediate metal layer are spaced vertically apart by a first distance. A resistive random access memory (RRAM) cell is arranged between the lower metal layer and the upper metal layer. The RRAM cell includes a bottom electrode and a top electrode which are separated by a data storage layer having a variable resistance. The data storage layer vertically spans a second distance that is greater than the first distance.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: January 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jen-Sheng Yang, Chih-Yang Chang, Chin-Chieh Yang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Yu-Wen Liao, Manish Kumar Singh
  • Patent number: 9537094
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20160380193
    Abstract: Some embodiments relate to an integrated circuit device. The integrated circuit device includes a resistive random access memory (RRAM) cell, which includes a top electrode and a bottom electrode that are separated by a RRAM dielectric layer. The top electrode of the RRAM cell has a recess in its upper surface. A via is disposed over the RRAM cell and contacts the top electrode within the recess.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 9478638
    Abstract: The present disclosure provides one embodiment of a resistive random access memory (RRAM) structure. The RRAM structure includes a resistive memory element formed on a semiconductor substrate and designed for data storage; and a field effect transistor (FET) formed on the semiconductor substrate and coupled with the resistive memory element. The FET includes asymmetric source and drain. The resistive element includes a resistive material layer and further includes first and second electrodes interposed by the resistive material layer.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 25, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chieh Yang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Chih-Yang Chang, Hsia-Wei Chen
  • Patent number: 9466794
    Abstract: The present disclosure provides a resistive random access memory (RRAM) cells and methods of making the same. The RRAM cell includes a transistor and an RRAM structure. The RRAM structure includes a bottom electrode having a via portion and a non-planar portion, a resistive material layer conformally covering the non-planar portion of the bottom electrode; and, a top electrode on the resistive material layer. The via portion of the bottom electrode is embedded in a first RRAM stop layer. The non-planar portion of the bottom electrode has an apex and is centered above the via portion.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: October 11, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chieh Yang, Wen-Ting Chu, Yu-Wen Liao, Chih-Yang Chang, Hsia-Wei Chen, Kuo-Chi Tu, Ching-Pei Hsieh
  • Publication number: 20160276408
    Abstract: A resistive random access memory (RRAM) cell comprises a transistor having a gate and a source/drain region, a bottom electrode coplanar with the gate, a resistive material layer over the bottom electrode, a top electrode over the resistive material layer, and a conductive material electrically connecting the bottom electrode to the source/drain region.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Chih-Yang CHANG, Wen-Ting CHU, Kuo-Chi TU, Yu-Wen LIAO, Hsia-Wei CHEN, Chin-Chieh YANG
  • Publication number: 20160268507
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20160268499
    Abstract: A method of forming a magnetoresistive random access memory (MRAM) device including a perpendicular MTJ (magnetic tunnel junction) is provided. The method includes forming a magnetic tunneling junction (MTJ) over a bottom electrode layer. A top electrode layer is formed over an upper surface of the MTJ, and a hard mask is formed over an upper surface of the top electrode layer. A first etch is performed through the top electrode layer, through regions of the MTJ unmasked by the hard mask, to form a top electrode and an etched MTJ. Sidewall spacers are formed extending from an upper surface of the hard mask or the top electrode, along sidewalls of the top electrode and the etched MTJ, to a point below or about even with an upper surface of the bottom electrode. A resulting MRAM device structure is also provided.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 15, 2016
    Inventors: Wen-Chun You, Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 9444045
    Abstract: Some embodiments relate to an integrated circuit device. The integrated circuit device includes a resistive random access memory (RRAM) cell, which includes a top electrode and a bottom electrode that are separated by a RRAM dielectric layer. The top electrode of the RRAM cell has a recess in its upper surface. A via is disposed over the RRAM cell and contacts the top electrode within the recess.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: September 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 9431604
    Abstract: The present disclosure provides a resistive random access memory (RRAM) cells and methods of making the same. The RRAM cell includes a transistor and an RRAM structure electrically connected to the transistor. The RRAM structure includes a bottom electrode having a via portion and a top portion, a resistive material layer over the bottom electrode and having a same width as the top portion of the bottom electrode, and a top electrode over the resistive material layer and having a smaller width than the resistive material layer.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 30, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Wen Liao, Wen-Ting Chu, Kuo-Chi Tu, Chin-Chieh Yang, Chih-Yang Chang, Hsia-Wei Chen
  • Publication number: 20160248008
    Abstract: The present disclosure provides a resistive random access memory (RRAM) cells and methods of making the same. The RRAM cell includes a transistor and an RRAM structure. The RRAM structure includes a bottom electrode having a via portion and a top portion, a resistive material layer on the bottom electrode having a width that is same as a width of the top portion of the bottom electrode; a capping layer over the bottom electrode; a spacer surrounding the capping layer; and, a top electrode on the capping layer having a smaller width than the resistive material layer. The RRAM cell further includes a conductive material connecting the top electrode of the RRAM structure to a metal layer.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chin-Chieh Yang, Chih-Yang Chang, Yu-Wen Liao
  • Patent number: 9425392
    Abstract: The present disclosure relates to a method of forming a resistive random access memory (RRAM) cell. The method forms a bottom electrode over a bottom electrode via. The method further forms a variable resistive dielectric layer over the bottom electrode, and a top electrode over the variable resistive dielectric layer. The method forms a top electrode via vertically extending outward from an upper surface of the top electrode at a position centered along a first axis that is laterally offset from a second axis centered upon the bottom electrode via. The top electrode via has a smaller width than the top electrode. Laterally offsetting the top electrode via from the bottom electrode via provides the top electrode via with good contact resistance.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: August 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Publication number: 20160225988
    Abstract: A method includes forming a protection material over a conductive structure, an opening over the structure is partially filled with a first electrode material to form a first electrode; a resistance variable layer and a second electrode material are also formed in the opening. The second electrode material and the resistance variable layer are patterned to form a memory element. The method includes forming an interlayer dielectric over the memory element and the periphery region of the substrate and disposing contacts in the interlayer dielectric.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Yu-Wen Liao, Chin-Chieh Yang, Wen-Ting Chu
  • Publication number: 20160218283
    Abstract: A resistive random access memory (RRAM) cell with a high ? layer based on a group-V oxide and hafnium oxide is provided. The RRAM cell includes a bottom electrode layer, a group-V oxide layer arranged over the bottom electrode layer, and a hafnium oxide based layer arranged over and abutting the group-V oxide layer. The RRAM cell further includes a capping layer arranged over and abutting the hafnium oxide based layer, and a top electrode layer arranged over the capping layer. A method for manufacturing the RRAM cell is also provided.
    Type: Application
    Filed: January 26, 2015
    Publication date: July 28, 2016
    Inventors: Hai-Dang Trinh, Chia-Shiung Tsai, Chin-Wei Liang, Cheng-Yuan Tsai, Hsing-Lien Lin, Chin-Chieh Yang, Wen-Ting Chu
  • Patent number: 9368722
    Abstract: One embodiment in the present disclosure provides a resistor in a resistive random access memory (RRAM). The resistor includes a first electrode; a resistive layer on the first electrode; an electric field enhancement array in the resistive layer; and a second electrode on the resistive layer. The electric field enhancement array includes a plurality of electric field enhancers arranged in a same plane. One embodiment in the present disclosure provides a method of manufacturing a resistor structure in an RRAM. The method comprises (1) forming a first resistive layer on a first electrode; (2) forming a metal layer on the resistive layer; (3) patterning the metal layer to form a metal dot array on the resistive layer; and (4) forming a second electrode on the metal dot array. The metal dot array comprises a plurality of metal dots, and a distance between adjacent metal dots is less than 40 nm.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 14, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sheng-Hung Shih, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Chih-Yang Chang, Chin-Chieh Yang, Hsia-Wei Chen, Wen-Chun You, Chih-Ming Chen
  • Patent number: 9356072
    Abstract: A resistive random access memory (RRAM) cell comprises a transistor having a gate and a source/drain region, a bottom electrode having an upper surface coplanar with a top surface of the gate, a resistive material layer on the bottom electrode, a top electrode on the resistive material layer, and a conductive material connecting the bottom electrode to the source/drain region.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang
  • Patent number: 9349953
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: May 24, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Yu-Wen Liao, Chin-Chieh Yang, Wen-Chun You, Sheng-Hung Shih, Wen-Ting Chu
  • Patent number: 9331277
    Abstract: The present disclosure provides a resistive random access memory (RRAM) cells and methods of making the same. The RRAM cell includes a transistor and an RRAM structure. The RRAM structure includes a bottom electrode having a via portion and a top portion, a resistive material layer on the bottom electrode having a width that is same as a width of the top portion of the bottom electrode; a capping layer over the bottom electrode; a spacer surrounding the capping layer; and, a top electrode on the capping layer having a smaller width than the resistive material layer. The RRAM cell further includes a conductive material connecting the top electrode of the RRAM structure to a metal layer.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: May 3, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chin-Chieh Yang, Chih-Yang Chang, Yu-Wen Liao
  • Publication number: 20160118583
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao