Patents by Inventor Chin-Chieh YANG

Chin-Chieh YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190386204
    Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
  • Patent number: 10510953
    Abstract: Some embodiments relate to a device. The device includes a top electrode and a via disposed over the top electrode. A peripheral upper surface of the top electrode is above a central upper surface of the top electrode, and a tapered inner sidewall of the top electrode connects the peripheral upper surface to the central upper surface. The via establishes electrical contact with the tapered inner sidewall but is spaced apart from the central upper surface.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 10504963
    Abstract: In some embodiments, the present disclosure relates to a memory circuit having a first resistive random access memory (RRAM) element and a second RRAM element arranged within a dielectric structure over a substrate. The first RRAM element has a first conjunct electrode separated from a first disjunct electrode by a first data storage layer. The second RRAM element has a second conjunct electrode separated from a second disjunct electrode by a second data storage layer. A control device is disposed within the substrate and has first terminal coupled to the first conjunct electrode and the second conjunct electrode and a second terminal coupled to a word-line.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190371999
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode over a substrate. A data storage layer is over the bottom electrode and has a first thickness. A capping layer is over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 1.9 and approximately 3 times thicker than the first thickness. A top electrode is over the capping layer.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Patent number: 10475852
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain of the FET has a higher doping concentration than the source of the FET. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: November 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190272873
    Abstract: The present disclosure, in some embodiments, relates to a method of operating a resistive random access memory (RRAM) array. The method includes applying a word-line voltage to a selected word-line during a read operation. A non-zero voltage is applied to a selected bit-line during the read operation. A first voltage is applied to a selected source-line during the read operation. The first voltage is smaller than a second voltage applied to an unselected source-line during the read operation.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 5, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Chang-Sheng Liao, Hsia-Wei Chen, Jen-Sheng Yang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Manish Kumar Singh, Chi-Tsai Chen
  • Publication number: 20190259944
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10388868
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10388865
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode disposed over a lower interconnect layer and a data storage layer having a first thickness over the bottom electrode. A capping layer is disposed over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 2 and approximately 3 times thicker than the first thickness. A top electrode is disposed over the capping layer and an upper interconnect layer is disposed over the top electrode.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Publication number: 20190244895
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a lower interconnect layer disposed within a first inter-level dielectric (ILD) layer over a substrate. A plurality of MIM (metal-insulator-metal) structures are disposed within a second inter-level dielectric (ILD) layer over the lower interconnect layer. An upper interconnect layer is coupled to the plurality of MIM structures at first locations that are directly over second locations at which the lower interconnect layer is coupled to the plurality of MIM structures. One or both of the lower interconnect layer and the upper interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu
  • Publication number: 20190229265
    Abstract: Some embodiments relate to a device. The device includes a top electrode and a via disposed over the top electrode. A peripheral upper surface of the top electrode is above a central upper surface of the top electrode, and a tapered inner sidewall of the top electrode connects the peripheral upper surface to the central upper surface. The via establishes electrical contact with the tapered inner sidewall but is spaced apart from the central upper surface.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 10311952
    Abstract: In some embodiments, the present disclosure relates to a resistive random access memory (RRAM) memory circuit. The memory circuit has a word-line decoder operably coupled to a first RRAM device and a second RRAM device by a word-line. A bit-line decoder is coupled to the first RRAM device by a first bit-line and to the second RRAM device by a second bit-line. A bias element is configured to apply a first non-zero bias voltage to the second bit-line concurrent to the bit-line decoder applying a non-zero voltage to the first bit-line.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: June 4, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Chang-Sheng Liao, Hsia-Wei Chen, Jen-Sheng Yang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Manish Kumar Singh, Chi-Tsai Chen
  • Patent number: 10276489
    Abstract: The present disclosure relates to an integrated circuit configured to mitigate damage to MIM decoupling capacitors. In some embodiments, the integrated chip has a lower interconnect layer vertically separated from a substrate by a first inter-level dielectric (ILD) layer. A conductive contact extends from a transistor device within the substrate to an uppermost surface of the first ILD layer. A plurality of MIM (metal-insulator-metal) structures are arranged over the lower interconnect layer. An upper interconnect layer is over the plurality of MIM structures. One or both of the lower interconnect layer and the upper interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu
  • Patent number: 10276790
    Abstract: Some embodiments relate to an integrated circuit device, which includes a bottom electrode, a dielectric layer, and top electrode. The dielectric layer is disposed over the bottom electrode. The top electrode is disposed over the dielectric layer, and an upper surface of the top electrode exhibits a recess. A via is disposed over the top electrode. The via makes electrical contact with only a tapered sidewall of the recess without contacting a bottom surface of the recess.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Publication number: 20190123271
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a bottom electrode via and a bottom electrode over a top of the bottom electrode via. A data storage layer is over the bottom electrode and a top electrode is over the data storage layer. A top electrode via is on an upper surface of the top electrode and is centered along a first line that is laterally offset from a second line centered upon a bottommost surface of the bottom electrode via. The first line is perpendicular to the upper surface of the top electrode and parallel to the second line.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Publication number: 20190123274
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190109178
    Abstract: In some embodiments, the present disclosure relates to a method of forming a memory circuit. The method may be performed by forming an interconnect wire within an inter-level dielectric (ILD) layer over a substrate. A conjunct electrode structure is formed over the interconnect wire, a data storage film is formed over the conjunct electrode structure, and a disjunct electrode structure is formed over the data storage film. The data storage film, the disjunct electrode structure, and the conjunct electrode structure are patterned to form a first data storage layer between the interconnect wire and a first disjunct electrode and to form a second data storage layer between the interconnect wire and a second disjunct electrode.
    Type: Application
    Filed: November 28, 2018
    Publication date: April 11, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190067373
    Abstract: In some embodiments, the present disclosure relates to a memory circuit having a first resistive random access memory (RRAM) element and a second RRAM element arranged within a dielectric structure over a substrate. The first RRAM element has a first conjunct electrode separated from a first disjunct electrode by a first data storage layer. The second RRAM element has a second conjunct electrode separated from a second disjunct electrode by a second data storage layer. A control device is disposed within the substrate and has first terminal coupled to the first conjunct electrode and the second conjunct electrode and a second terminal coupled to a word-line.
    Type: Application
    Filed: February 26, 2018
    Publication date: February 28, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190058109
    Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.
    Type: Application
    Filed: November 27, 2017
    Publication date: February 21, 2019
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
  • Publication number: 20190051702
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain of the FET has a higher doping concentration than the source of the FET. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao