Patents by Inventor Ching-Hua Hsieh

Ching-Hua Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140144581
    Abstract: A method for manufacturing magnet-conductive device includes a filling step and an adhering step. The filling step includes providing a glue by a glue dispenser and contacting the glue with a first magnet-conductive plate to make the glue adhered to a lower surface of the first magnet-conductive plate. The adhering step includes making the lower surface of the first magnet-conductive plate face toward a second magnet-conductive plate, making the first magnet-conductive plate and the second magnet-conductive plate stackable from each other and adhering the first magnet-conductive plate and the second magnet-conductive plate via the glue. Eventually, by repeatedly performing the filling step and the adhering step, the desirable stacking quantity is achieved to form a magnet-conductive device.
    Type: Application
    Filed: October 16, 2013
    Publication date: May 29, 2014
    Applicant: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Kuo-Yin Tu, Hsing-Chih Tsai, Hsin-Te Wang, Pin-Jyun Chen, Chih-Hao Lin, Po-Fu Hsu, Ching-Hua Hsieh
  • Publication number: 20140027822
    Abstract: A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Li-Lin Su, Ching-Hua Hsieh, Huang-Ming Chen, Hsueh Wen Tsau
  • Patent number: 8629058
    Abstract: Methods for forming a via structure are provided. The method includes depositing a first-layer conductive line over a semiconductor substrate, forming a dielectric layer over the first-layer conductive line, forming a via opening in the dielectric layer and exposing the first-layer conductive line in the via opening, forming a recess portion in the first-layer conductive line, and filling the via opening to form a via extending through the dielectric layer to the first-layer conductive line. The via has a substantially tapered profile and substantially extends into the recess in the first-layer conductive line.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shau-Lin Shue, Cheng-Lin Huang, Ching-Hua Hsieh
  • Patent number: 8627243
    Abstract: Methods for optimizing conductor patterns for conductors formed by ECP and CMP processes. A method includes receiving layout data for an IC design where electrochemical plating (ECP) processes form patterned conductors in at least one metal layer over a semiconductor wafer; determining from the received layout data a global effects factor corresponding to a global pattern density; determining layout effects factors for unit grid areas corresponding to the pattern density of the at least one metal layer within the unit grid areas, determining local effects factors for each unit grid area; using a computing device, executing an ECP simulator using at least one of the global effects factor and the local effects factors, and using the layout effects factor; outputting an predicted post-ECP hump data map from the ECP simulator; and if indicated by a threshold comparison, modifying the layout data.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Feng Lin, Yu-Wei Chou, Wen-Cheng Huang, Cheng-I Huang, Ching-Hua Hsieh
  • Patent number: 8361900
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer. A liner is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the liner and the dielectric layer. The barrier layer is a metal oxide.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shing-Chyang Pan, Han-Hsin Kuo, Chung-Chi Ko, Ching-Hua Hsieh
  • Publication number: 20120322261
    Abstract: Methods for forming a via structure are provided. The method includes depositing a first-layer conductive line over a semiconductor substrate, forming a dielectric layer over the first-layer conductive line, forming a via opening in the dielectric layer and exposing the first-layer conductive line in the via opening, forming a recess portion in the first-layer conductive line, and filling the via opening to form a via extending through the dielectric layer to the first-layer conductive line. The via has a substantially tapered profile and substantially extends into the recess in the first-layer conductive line.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shau-Lin Shue, Cheng-Lin Huang, Ching-Hua Hsieh
  • Publication number: 20120293782
    Abstract: Methods and systems for lithographically exposing a substrate based on a curvature profile of the substrate.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 22, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tzu Lu, Hung Chang Hsieh, Kuei Shun Chen, Hsueh-Hung Fu, Ching-Hua Hsieh, Shau-Lin Shue
  • Patent number: 8264086
    Abstract: A via structure having improved reliability and performance and methods of forming the same are provided. The via structure includes a first-layer conductive line, a second-layer conductive line, and a via electrically coupled between the first-layer conductive line and the second-layer conductive line. The via has a substantially tapered profile and substantially extends into a recess in the first-layer conductive line.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shau-Lin Shue, Cheng-Lin Huang, Ching-Hua Hsieh
  • Patent number: 8252690
    Abstract: A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Cheng-Lin Huang, Shing-Chyang Pan, Ching-Hua Hsieh
  • Patent number: 8236579
    Abstract: Methods and systems for lithographically exposing a substrate based on a curvature profile of the substrate.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: August 7, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tzu Lu, Hung Chang Hsieh, Kuei Shun Chen, Hsueh-Hung Fu, Ching-Hua Hsieh, Shau-Lin Shue
  • Patent number: 8178437
    Abstract: A semiconductor diffusion barrier layer and its method of manufacture is described. The barrier layer includes of at least one layer of TaN, TiN, WN, TbN, VN, ZrN, CrN, WC, WN, WCN, NbN, AlN, and combinations thereof. The barrier layer may further include a metal rich surface. Embodiments preferably include a glue layer about 10 to 500 Angstroms thick, the glue layer consisting of Ru, Ta, Ti, W, Co, Ni, Al, Nb, AlCu, and a metal-rich nitride, and combinations thereof. The ratio of the glue layer thickness to the barrier layer thickness is preferably about 1 to 50. Other alternative preferred embodiments further include a conductor annealing step. The various layers may be deposited using PVD, CVD, PECVD, PEALD and/or ALD methods including nitridation and silicidation methods.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: May 15, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Chang, Ching-Hua Hsieh, Shau-Lin Shue
  • Publication number: 20110256715
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer. A liner is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the liner and the dielectric layer. The barrier layer is a metal oxide.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shing-Chyang PAN, Han-Hsin KUO, Chung-Chi KO, Ching-Hua HSIEH
  • Patent number: 8034709
    Abstract: Provided is a method for forming a composite barrier layer with superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer generally form boundaries with dielectric materials and crystalline layers generally form boundaries with conductive materials such as interconnect materials.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: October 11, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lin Huang, Ching-Hua Hsieh, Hsien-Ming Lee, Shing-Chyang Pan, Chao-Hsien Peng, Li-Lin Su, Jing-Cheng Lin, Shao-Lin Shue, Mong-Song Liang
  • Patent number: 7704886
    Abstract: A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Shing-Chyang Pan, Cheng-Lin Huang, Ching-Hua Hsieh
  • Patent number: 7700479
    Abstract: A method for fabricating an integrated circuit includes providing a substrate, forming a low-k dielectric layer over the substrate, etching the low-k dielectric layer to form an opening in the low-k dielectric layer wherein an underlying metal is exposed through the opening, performing a remote plasma treatment to the substrate wherein a plasma used for the remote plasma treatment is generated from a plasma generator separated from a chamber in which the substrate is located, forming a diffusion barrier layer in the opening, and filling the opening with a conductive material. The method preferably includes an in-situ plasma treatment in a same chamber as the step of etching the low-k dielectric layer.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lin Huang, Ching-Hua Hsieh, Shau-Lin Shue
  • Patent number: 7612451
    Abstract: An integrated circuit structure having improved resistivity and a method for forming the same are provided. The integrated circuit structure includes a dielectric layer, an opening in the dielectric layer, and a damascene structure in the opening. The damascene structure includes a metallic barrier layer in the opening and in physical contact with the dielectric layer, a conductive material filling the remaining part of the opening, and an interlayer between and adjoining the metallic barrier layer and the conductive material. The interlayer is preferably a metal compound layer.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chao Shih, Cheng-Lin Huang, Ching-Hua Hsieh, Shau-Lin Shue
  • Publication number: 20090258487
    Abstract: A method for forming an integrated circuit structure includes providing a semiconductor substrate; forming a low-k dielectric layer over the semiconductor substrate; generating hydrogen radicals using a remote plasma method; performing a first hydrogen radical treatment to the low-k dielectric layer using the hydrogen radicals; forming an opening in the low-k dielectric layer; filling the opening with a conductive material; and performing a planarization to remove excess conductive material on the low-k dielectric layer.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Inventors: Keng-Chu Lin, Chia-Cheng Chou, Chung-Chi Ko, Ching-Hua Hsieh, Cheng-Lin Huang, Shwang-Ming Jeng
  • Publication number: 20090209106
    Abstract: A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventors: Li-Lin Su, Cheng-Lin Huang, Shing-Chyang Pan, Ching-Hua Hsieh
  • Publication number: 20090209098
    Abstract: A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventors: Li-Lin Su, Shing-Chyang Pan, Cheng-Lin Huang, Ching-Hua Hsieh
  • Publication number: 20090047780
    Abstract: Provided is a method for forming a composite barrier layer with superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer generally form boundaries with dielectric materials and crystalline layers generally form boundaries with conductive materials such as interconnect materials.
    Type: Application
    Filed: October 10, 2008
    Publication date: February 19, 2009
    Inventors: Cheng-Lin Huang, Ching-Hua Hsieh, Hsien-Ming Lee, Shing-Chyang Pan, Chao-Hsien Peng, Li-Lin Su, Jing-Cheng Lin, Shao-Lin Shue, Mong-Song Liang