Patents by Inventor Ching Lin
Ching Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12273037Abstract: A driving circuit includes a first driving signal generator, a first voltage conversion circuit and a first switch. The first driving signal generator generates a first driving signal according a first input signal, wherein the first driving signal is a pulse width modulated signal. The first voltage conversion circuit is coupled between the first driving signal generator and a control terminal of a first power transistor, converts the first driving signal to an output driving signal by charges a capacitor and discharges the capacitor, wherein the output driving signal is output to the control terminal of the first power transistor. The first switch is couple with the first power transistor in series, and is controlled by a control signal to be turned-on or cut-off.Type: GrantFiled: June 29, 2022Date of Patent: April 8, 2025Assignee: Novatek Microelectronics Corp.Inventors: Sheng-Hsi Hung, Yen-Ching Lin
-
Publication number: 20250113547Abstract: Integrated circuit structures having internal spacers for 2D channel materials, and methods of fabricating integrated circuit structures having internal spacers for 2D channel materials, are described. For example, an integrated circuit structure includes a stack of two-dimensional (2D) material nanowires. A gate structure is vertically around the stack of 2D material nanowires. Internal gate spacers are between vertically adjacent ones of the stack of 2D material nanowires and laterally adjacent to the gate structure. The 2D material nanowires are recessed relative to the internal gate spacers. Conductive contact structures are at corresponding ends of the stack of 2D material nanowires, the conductive contact structures adjacent to the internal gate spacers and vertically overlapping with the internal gate spacers.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Inventors: Chia-Ching LIN, Tao CHU, Chiao-Ti HUANG, Guowei XU, Robin CHAO, Feng ZHANG, Yue ZHONG, Yang ZHANG, Ting-Hsiang HUNG, Kevin P. O’BRIEN, Uygar E. AVCI, Carl H. NAYLOR, Mahmut Sami KAVRIK, Andrey VYATSKIKH, Rachel STEINHARDT, Chelsey DOROW, Kirby MAXEY
-
Publication number: 20250112120Abstract: Integrated circuit structures having deep via bar width tuning are described. For example, an integrated circuit structure includes a plurality of gate lines extending over first and second semiconductor nanowire stack channel structures or fin structures. A plurality of trench contacts is intervening with the plurality of gate lines. A conductive structure is between the first and second semiconductor nanowire stack channel structures or fin structures, the conductive structure having a first width in a first region and a second width in a second region between the first and second semiconductor nanowire stack channel structures or fin structures, the second width different than the first width.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Conor P. PULS, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
-
Publication number: 20250113540Abstract: Techniques and mechanisms for providing gate dielectric structures of a transistor. In an embodiment, the transistor comprises a thin channel structure which comprises one or more layers of a transition metal dichalcogenide (TMD) material. The channel structure forms two surfaces on opposite respective sides thereof, wherein the surfaces extend to each of two opposing edges of the channel structure. A composite gate dielectric structure comprises first bodies of a first dielectric material, wherein the first bodies each adjoin a different respective one of the two opposing edges, and variously extend to each of the surfaces two surfaces. The composite gate dielectric structure further comprises another body of a second dielectric material other than the first dielectric material. In another embodiment, the other body adjoins one or both of the two surfaces, and extends along one or both of the two surfaces to each of the first bodies.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Carl H. Naylor, Rachel Steinhardt, Mahmut Sami Kavrik, Chia-Ching Lin, Andrey Vyatskikh, Kevin O’Brien, Kirby Maxey, Ashish Verma Penumatcha, Uygar Avci, Matthew Metz, Chelsey Dorow
-
Publication number: 20250113573Abstract: A low strain transfer protective layer is formed on a transition metal dichalcogenide (TMD) monolayer to enable the transfer of the TMD monolayer from a growth substrate to a target substrate with little or no strain-induced damage to the TMD monolayer. Transfer of a TMD monolayer from a growth substrate to a target substrate comprises two transfers, a first transfer from the growth substrate to a carrier wafer and a second transfer from the carrier wafer to the target substrate. Transfer of the TMD monolayer from the growth substrate to the carrier wafer comprises mechanically lifting off the TMD monolayer from the growth substrate. The low strain transfer protective layer can limit the amount of strain transferred from the carrier wafer to the TMD monolayer during lift-off. The carrier wafer and protective layer are separated from the TMD monolayer after attachment of the TMD monolayer to the target substrate.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Andrey Vyatskikh, Paul B. Fischer, Uygar E. Avci, Chelsey Dorow, Mahmut Sami Kavrik, Karthik Krishnaswamy, Chia-Ching Lin, Jennifer Lux, Kirby Maxey, Carl Hugo Naylor, Kevin P. O'Brien, Justin R. Weber
-
Publication number: 20250113572Abstract: Techniques and mechanisms for forming a gate dielectric structure and source or drain (S/D) structures on a monolayer channel structure of a transistor. In an embodiment, the channel structure comprises a two-dimensional (2D) layer of a transition metal dichalcogenide (TMD) material. During fabrication of the transistor structure, a layer of a dielectric material is deposited on the channel structure, wherein the dielectric material is suitable to provide a reaction, with a plasma, to produce a conductive material. While a first portion of the dielectric material is covered by a patterned structure, a second portion of the dielectric material is exposed to a plasma treatment to form a source or dielectric (S/D) electrode structure that adjoins the first portion. In another embodiment, the dielectric material is an oxide of a Group V-VI transition metal.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Mahmut Sami Kavrik, Uygar E. Avci, Kevi P. Obrien, Chia-Ching Lin, Carl H. Naylor, Kirby Maxey, Andrey Vyatskikh, Scott B. Clendenning, Matthew Metz, Marko Radosavljevic
-
Publication number: 20250112122Abstract: Integrated circuit (IC) devices and systems with backside power gates, and methods of forming the same, are disclosed herein. In one embodiment, an integrated circuit die includes a device layer with one or more transistors, a first interconnect over the device layer, a second interconnect under the device layer, and one or more power gates under the device layer.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: INTEL CORPORATIONInventors: Kevin P. O'Brien, Paul Gutwin, David L. Kencke, Mahmut Sami Kavrik, Daniel Chanemougame, Ashish Verma Penumatcha, Carl Hugo Naylor, Kirby Maxey, Uygar E. Avci, Tristan A. Tronic, Chelsey Dorow, Andrey Vyatskikh, Rachel A. Steinhardt, Chia-Ching Lin, Chi-Yin Cheng, Yu-Jin Chen, Tyrone Wilson
-
Publication number: 20250113559Abstract: Trench contact structures with etch stop layers, and methods of fabricating trench contact structures with etch-stop layers, are described. In an example, an integrated circuit structure includes a fin structure. An epitaxial source or drain structure is on the fin structure. An isolation structure is laterally adjacent to sides of the fin structure. A dielectric layer is on at least a portion of a top surface of the isolation structure and partially surrounds the epitaxial source or drain structure and leaves an exposed portion of the epitaxial source or drain structure. A conductive trench contact structure is on the exposed portion of the epitaxial source or drain structure. The conductive trench contact structure does not extend into the isolation structure.Type: ApplicationFiled: September 28, 2023Publication date: April 3, 2025Inventors: Guowei XU, Chiao-Ti HUANG, Feng ZHANG, Robin CHAO, Tao CHU, Anand S. MURTHY, Ting-Hsiang HUNG, Chung-Hsun LIN, Oleg GOLONZKA, Yang ZHANG, Chia-Ching LIN
-
Publication number: 20250113595Abstract: Multiple voltage threshold integrated circuit structures with local layout effect tuning, and methods of fabricating multiple voltage threshold integrated circuit structures with local layout effect tuning, are described. For example, an integrated circuit structure includes a first fin structure or vertical arrangement of horizontal nanowires. A second fin structure or vertical arrangement of horizontal nanowires is laterally spaced apart from the first fin structure or vertical arrangement of horizontal nanowires. An N-type gate structure is over the first fin structure or vertical arrangement of horizontal nanowires. A P-type gate structure is over the second fin structure or vertical arrangement of horizontal nanowires, the P-type gate structure in contact with the N-type gate structure with a PN boundary between the P-type gate structure and the N-type gate structure.Type: ApplicationFiled: September 28, 2023Publication date: April 3, 2025Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
-
Patent number: 12266720Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.Type: GrantFiled: December 21, 2020Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Carl Naylor, Chelsey Dorow, Kevin O'Brien, Sudarat Lee, Kirby Maxey, Ashish Verma Penumatcha, Tanay Gosavi, Patrick Theofanis, Chia-Ching Lin, Uygar Avci, Matthew Metz, Shriram Shivaraman
-
Patent number: 12266712Abstract: A transistor includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source structure coupled to a first end of the first and second channel layers, a drain structure coupled to a second end of the first and second channel layers, a gate structure between the source material and the drain material, and between the first channel layer and the second channel layer. The transistor further includes a spacer laterally between the gate structure and the and the source structure and between the gate structure and the drain structure. A liner is between the spacer and the gate structure. The liner is in contact with the first channel layer and the second channel layer and extends between the gate structure and the respective source structure and the drain structure.Type: GrantFiled: December 23, 2020Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Ashish Verma Penumatcha, Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Tanay Gosavi, Sudarat Lee, Chia-Ching Lin, Seung Hoon Sung, Uygar Avci
-
Publication number: 20250107212Abstract: Techniques are provided to form an integrated circuit having an airgap spacer between at least a transistor gate structure and an adjacent source or drain contact. In one such example, a FET (field effect transistor) includes a gate structure that extends around a fin or any number of nanowires (or nanoribbons or nanosheets, as the case may be) of semiconductor material. The semiconductor material may extend in a first direction between source and drain regions while the gate structure extends over the semiconductor material in a second direction. Airgaps are provided in the regions between the gate structures and the adjacent source/drain contacts. The airgaps have a low dielectric constant (e.g., around 1.0) to reduce the parasitic capacitance between the conductive structures.Type: ApplicationFiled: September 21, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Yang Zhang, Guowei Xu, Tao Chu, Robin Chao, Chiao-Ti Huang, Feng Zhang, Ting-Hsiang Hung, Chia-Ching Lin, Anand Murthy
-
Publication number: 20250107156Abstract: Techniques are provided herein to form an integrated circuit having dielectric material formed in cavities beneath source or drain regions. The cavities may be formed within subfin portions of semiconductor devices. In one such example, a FET (field effect transistor) includes a gate structure extending around a fin or any number of nanowires of semiconductor material. The semiconductor material may extend in a first direction between source and drain regions while the gate structure extends over the semiconductor material in a second direction substantially orthogonal to the first direction. A dielectric fill may be formed in a recess beneath the source or drain regions, or a dielectric liner may be formed on sidewalls of the recess, to prevent epitaxial growth of the source or drain regions from the subfins. Removal of the semiconductor subfin from the backside may then be performed without causing damage to the source or drain regions.Type: ApplicationFiled: September 21, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Chiao-Ti Huang, Robin Chao, Jaladhi Mehta, Tao Chu, Guowei Xu, Ting-Hsiang Hung, Feng Zhang, Yang Zhang, Chia-Ching Lin, Chung-Hsun Lin, Anand Murthy
-
Publication number: 20250107175Abstract: Integrated circuit structures having reduced local layout effects, and methods of fabricating integrated circuit structures having reduced local layout effects, are described. For example, an integrated circuit structure includes an NMOS region including a first plurality of fin structures or vertical stacks of horizontal nanowires, and first alternating gate lines and trench contact structures over the first plurality of fin structures or vertical stacks of horizontal nanowires. The integrated circuit structure also includes a PMOS region including a second plurality of fin structures or vertical stacks of horizontal nanowires, and second alternating gate and trench contact structures over the second plurality of fin structures or vertical stacks of horizontal nanowires. A gate line is shared between the NMOS region and the PMOS region, and a trench contact structure is shared between the NMOS region and the PMOS region.Type: ApplicationFiled: September 25, 2023Publication date: March 27, 2025Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
-
Publication number: 20250105136Abstract: Capacitors for use with integrated circuit packages are disclosed. An example apparatus includes a semiconductor substrate, a metal layer coupled to the semiconductor substrate, a dielectric layer coupled to the metal layer, the dielectric layer including a capacitor disposed therein, and an interface layer positioned between the metal layer and the dielectric layer, the interface layer in contact with the dielectric layer and in contact with the metal layer.Type: ApplicationFiled: September 25, 2023Publication date: March 27, 2025Inventors: Kimin Jun, Adel A. Elsherbini, Chia-Ching Lin, Sou-Chi Chang, Thomas Lee Sounart, Tushar Kanti Talukdar, Johanna Marie Swan, Uygar Avci
-
Publication number: 20250107147Abstract: Hybrid bonding interconnect (HBI) architectures for scalability. Embodiments implement a bonding layer on a semiconductor die that includes a thick oxide layer overlaid with a thin layer of a hermetic material including silicon and at least one of carbon and nitrogen. The conductive bonds of the semiconductor die are placed in the thick oxide layer and exposed at the surface of the hermetic material. Some embodiments implement a non-bonding moisture seal ring (MSR) structure.Type: ApplicationFiled: September 27, 2023Publication date: March 27, 2025Applicant: Intel CorporationInventors: Mahmut Sami Kavrik, Uygar E. Avci, Pratyush P. Buragohain, Chelsey Dorow, Jack T. Kavalieros, Chia-Ching Lin, Matthew V. Metz, Wouter Mortelmans, Carl Hugo Naylor, Kevin P. O'Brien, Ashish Verma Penumatcha, Carly Rogan, Rachel A. Steinhardt, Tristan A. Tronic, Andrey Vyatskikh
-
Publication number: 20250100881Abstract: A recycling system and method for treating waste sulfuric acid solution containing hydrogen peroxide are provided. The recycling system includes a preheat subsystem, a reaction cycle control subsystem, and a cooling subsystem. The preheat subsystem heats the waste sulfuric acid solution to a target temperature through a cyclic heat exchange method and then further raises the temperature using an acid-resistant heater. The reaction cycle control subsystem monitors the sulfuric acid concentration, hydrogen peroxide content, reaction temperature, and nitrate compound content of the waste sulfuric acid solution to determine the amount and mode of addition of a nitrate-containing promoter. The cooling subsystem includes a first cooling heat exchanger to transfer waste heat to the initial waste sulfuric acid solution and a second cooling heat exchanger to reduce the sulfuric acid to a safe temperature, thereby avoiding overheating.Type: ApplicationFiled: September 20, 2024Publication date: March 27, 2025Inventors: KUO-CHING LIN, SHR-HAN SHIU, YI-SYUAN HUANG
-
Publication number: 20250092553Abstract: The present invention discloses an electrodeposited copper foil with a uniform matte surface. The electrodeposited copper foil of the present invention has an average thickness (TAve) of about 30 ?m to about 400 ?m; and the matte surface of the present electrodeposited copper foil has a uniformity factor (UF) of 5.5 ?m or less. Also disclosed are methods for manufacturing the present electrodeposited copper foils and articles made therefrom.Type: ApplicationFiled: July 22, 2024Publication date: March 20, 2025Inventors: SHIH-CHING LIN, YA-MEI LIN
-
Publication number: 20250098260Abstract: Integrated circuit structures having patch spacers, and methods of fabricating integrated circuit structures having patch spacers, are described. For example, an integrated circuit structure includes a stack of horizontal nanowires. A gate structure is vertically around the stack of horizontal nanowires, the stack of horizontal nanowires extending laterally beyond the gate structure. An internal gate spacer is between vertically adjacent ones of the stack of horizontal nanowires and laterally adjacent to the gate structure. An external gate spacer is along sides of the gate structure and over the stack of horizontal nanowires, the external gate spacer having one or more patch spacers therein.Type: ApplicationFiled: September 19, 2023Publication date: March 20, 2025Inventors: Guowei XU, Feng ZHANG, Chiao-Ti HUANG, Robin CHAO, Tao CHU, Chung-Hsun LIN, Oleg GOLONZKA, Yang ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Anand S. MURTHY
-
Publication number: 20250096114Abstract: Techniques to form semiconductor devices can include one or more via structures having substrate taps. A semiconductor device includes a gate structure around or otherwise on a semiconductor region (or channel region). The gate structure may extend over the semiconductor regions of any number of devices along a given direction. The gate structure may be interrupted, for example, between two transistors with a via structure that extends through an entire thickness of the gate structure and includes a conductive core. The via structure has a conductive foot portion beneath the gate structure and a conductive arm portion extending from the conductive foot portion along a height of the gate structure. The conductive foot portion has a greater width along the given direction than any part of the conductive arm portion. The via structure may further include one or more dielectric layers between the conductive arm portion and the gate structure.Type: ApplicationFiled: September 19, 2023Publication date: March 20, 2025Applicant: Intel CorporationInventors: Robin Chao, Chiao-Ti Huang, Guowei Xu, Ting-Hsiang Hung, Tao Chu, Feng Zhang, Chia-Ching Lin, Yang Zhang, Anand Murthy, Conor P. Puls