Patents by Inventor Ching-Pang Lee

Ching-Pang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180023409
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines vary localized porosity or abradability through use of holes or dimple depressions of desired polygonal profiles that are formed into the surface of otherwise monolithic abradable surfaces or rib structures. Abradable porosity within a rib is varied locally by changing any one or more of hole/depression depth, diameter, array pitch density, and/or volume. In various embodiments, localized porosity increases and corresponding abradability increases axially from the upstream or forward axial end of the abradable surface to the downstream or aft end of the surface. In this way, the forward axial end of the abradable surface has less porosity to counter hot working gas erosion of the surface, while the more aft portions of the abradable surface accommodate blade cutting and incursion with lower likelihood of blade tip wear.
    Type: Application
    Filed: December 9, 2015
    Publication date: January 25, 2018
    Inventors: Ching-Pang Lee, Ramesh Subramanian, Kok-Mun Tham
  • Patent number: 9874102
    Abstract: A cooling system (10) positioned within a turbine airfoil (12) and having film cooling channels (16) positioned within inner and outer endwalls (18, 20) of the turbine airfoil (12), with cooling fluids supplied to the cooling channels (16) other than from an aft cooling chamber (22) to prevent blockages from developing within the film cooling channels (16) from debris that typically collects with the aft cooling chamber (22) during steady state operation of the turbine engine is disclosed. The cooling system (10) may include one or more midchord cooling channels (24) extending from a midchord cooling chamber (26) and including an outlet (28) positioned closer to a downstream edge (30) of the inner endwall (18) than an upstream wall (32) forming the aft cooling chamber (22).
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: January 23, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Gm Salam Azad, Ching-Pang Lee, Alan A. Thrift, Daniel Joo, Johan K. Westin, Caleb Myers
  • Patent number: 9863256
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities having an insert (18) contained within an aft cooling cavity (76) to form nearwall cooling channels having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows. In at least one embodiment, the cooling fluid flow controllers (22) may be positioned within a pressure side nearwall cooling channel (48) and a suction side nearwall cooling channel (50) that are both in fluid communication with a trailing edge channel (30). The trailing edge channel (30) may also include cooling fluid flow controllers (22) extending between the outer walls (12, 13) forming the pressure and suction sides.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: January 9, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Jae Y. Um, Zhengxiang Pu, Mohamed Abdullah, Eric Schroeder, Anthony Waywood
  • Publication number: 20170370232
    Abstract: An internal cooling system (10) for an airfoil (12) in a turbine engine (14) whereby the cooling system (10) includes a chordwise extending tip cooling channel (16) radially inward of a squealer tip (18) and formed at least in part by an inner wall (20) with a nonlinear outer surface (22) is disclosed. The nonlinear outer surface (22) of the inner wall (20) of the chordwise extending tip cooling channel (16) may be formed from pressure and suction side sections (24, 26) that intersect at a point (74) that is closer to the inner surface (30) of an outer wall (32) forming at least a portion of the squealer tip (18) than other aspects of the pressure side section (24) and the suction side section (26).
    Type: Application
    Filed: January 22, 2015
    Publication date: December 28, 2017
    Inventor: Ching-Pang Lee
  • Publication number: 20170370241
    Abstract: Turbine and compressor casing abradable components for turbine engines include abradable surfaces with a zonal system of forward (zone A) and rear or aft sections (zone B) surface features. The zone A surface profile comprises an array pattern of non-directional depression dimples, or upwardly projecting dimples, or both, in the abradable surface. The dimpled forward zone A surface features reduce surface solidity in a controlled manner, to help increase abradability during blade tip rubbing incidents, yet they provide sufficient material to resist incoming hot working fluid erosion of the abradable surface. In addition, the dimples provide generic forward section aerodynamic profiling to the abradable surface, compatible with different blade airfoil-camber profiles. The aft zone B surface features comprise an array pattern of ridges and grooves.
    Type: Application
    Filed: December 9, 2015
    Publication date: December 28, 2017
    Inventors: Kok-Mun Tham, Ching-Pang Lee
  • Publication number: 20170370231
    Abstract: A cooling system (10) for a turbine airfoil (12) of a turbine engine having one or more mid-chord cooling channels (16) that extend through both the airfoil (32) and a platform (18) of the airfoil (12) to provide adequate cooling the platform (18) while cooling the airfoil (32) is disclosed. The mid-chord cooling channel (16) may be formed from an airfoil portion (20) extending generally spanwise within the airfoil (32) and a platform portion (22) extending into a platform (18) of the airfoil (12) with a larger cross-sectional area than a cross-sectional area of the airfoil portion (20). The mid-chord cooling channel (16) may also extend into the platform (18) of the airfoil (12) a distance laterally outside of a silhouette (60) of the airfoil (32) defined by the leading edge (24), trailing edge (26), pressure side (28) and suction side (30) of the airfoil (32). Thus, the mid-chord cooling channel (16) extends laterally into the platform (18) to provide adequate cooling the platform (18).
    Type: Application
    Filed: January 28, 2015
    Publication date: December 28, 2017
    Inventors: Ching-Pang Lee, Anthony Waywood, Erik Johnson, Steven Koester
  • Patent number: 9840930
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities (16) having an insert (18) contained therein that forms nearwall cooling channels (20) having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels (20) may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows (28), and the internal cooling system (14) may include one or more bypass flow reducers (30) extending from the insert (18) toward the outer wall (24) to direct the cooling fluids through the channels (20) created by the cooling fluid flow controllers (22), thereby increasing the effectiveness of the internal cooling system (14).
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: December 12, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Mohamed Abdullah, Eric Schroeder, Ralph W. Matthews, Zhengxiang Pu
  • Patent number: 9810081
    Abstract: A conduit through which hot combustion gases pass in a gas turbine engine. The conduit includes a wall structure having a central axis and defining an inner volume of the conduit for permitting hot combustion gases to pass through the conduit. The wall structure includes a forward end, an aft end axially spaced from the forward end, the aft end defining a combustion gas outlet for the hot combustion gases passing through the conduit, and a plurality of generally radially outwardly extending protuberances formed in the wall structure. The protuberances each include at least one cooling fluid passage formed therethrough for permitting cooling fluid to enter the inner volume. At least one of the protuberances is shaped so as to cause cooling fluid passing through it to diverge in a circumferential direction as it enters into the inner volume.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 7, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Chander Prakash, Reinhard Schilp, David A. Little
  • Patent number: 9810074
    Abstract: Gas turbine engine blade squealer tips incorporate cooling slots formed in the suction side rail downstream of the leading edge for directing cooling gas flow along an inside edge of the squealer tip pressure side rail. Some embodiments incorporate a tip fin on the suction side rail proximal a cooling slot. Segmented suction side rail embodiments abrade opposing turbine casing abradable surfaces prior to potential contact with the pressure side rail, reducing likelihood of pressure side rail friction heating. During turbine engine operation cooler pressure side rails reduce likelihood of squealer tip erosion.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: November 7, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad
  • Patent number: 9797267
    Abstract: A turbine airfoil assembly for installation in a gas turbine engine. The airfoil assembly includes an endwall and an airfoil extending radially outwardly from the endwall. The airfoil includes pressure and suction sidewalls defining chordally spaced apart leading and trailing edges of the airfoil. An airfoil mean line is defined located centrally between the pressure and suction sidewalls. An angle between the mean line and a line parallel to the engine axis at the leading and trailing edges defines gas flow entry angles, ?, and exit angles, ?. Airfoil inlet and exit angles are substantially in accordance with inlet angle values, ?, and exit angle values, ?, set forth in one of Tables 1, 2, 3, and 4.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 24, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Andrew S. Lohaus, Anthony J. Malandra, Carmen Andrew Scribner, Farzad Taremi, Horia Flitan, Ching-Pang Lee, Gm Salam Azad, Tobias Buchal
  • Publication number: 20170297085
    Abstract: A die cast system having an inner liner insert that enables the configuration of a component produced by the system to be easily changed by changing the inner liner insert without having to rework the die housing is disclosed. Because the inner liner insert only need be removed and replaced to change the configuration of an outer surface of a component produced by the system, the cost savings is significant in contrast with conventional systems in which the die would have to be reworked.
    Type: Application
    Filed: October 15, 2014
    Publication date: October 19, 2017
    Inventor: Ching-Pang Lee
  • Publication number: 20170275998
    Abstract: A core structure (10) includes a first core element (16) including a leading edge section (30), a tip section (32), and a turn section (34) joining the leading edge and tip sections (30, 32). The first core element (16) is adapted to be used to form a leading edge cooling circuit (102) in a gas turbine engine airfoil (100). The leading edge cooling circuit (102) includes a cooling fluid passage (104) having a leading edge portion (106) formed by the first core element leading edge section (30), a tip portion (108) formed by the first core element tip section (32), and a turn portion (110) formed by the first core element turn section (34). Each of the leading edge portion (106), the tip portion (108), and the turn portion (110) of the cooling fluid passage (104) are formed concurrently in the airfoil (100) by the first core element (16).
    Type: Application
    Filed: September 18, 2014
    Publication date: September 28, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Erik Johnson, Anthony Waywood, Eric Schroeder, Zhengxiang Pu
  • Publication number: 20170268358
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities (16) having an insert (18) contained therein that forms nearwall cooling channels (20) having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels (20) may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows (28), and the internal cooling system (14) may include one or more bypass flow reducers (30) extending from the insert (18) toward the outer wall (24) to direct the cooling fluids through the channels (20) created by the cooling fluid flow controllers (22), thereby increasing the effectiveness of the internal cooling system (14).
    Type: Application
    Filed: September 4, 2014
    Publication date: September 21, 2017
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Mohamed Abdullah, Eric Schroeder, Ralph W. Matthews, Zhengxiang Pu
  • Publication number: 20170268348
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities having an insert (18) contained within an aft cooling cavity (76) to form nearwall cooling channels having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows. In at least one embodiment, the cooling fluid flow controllers (22) may be positioned within a pressure side nearwall cooling channel (48) and a suction side nearwall cooling channel (50) that are both in fluid communication with a trailing edge channel (30). The trailing edge channel (30) may also include cooling fluid flow controllers (22) extending between the outer walls (12, 13) forming the pressure and suction sides.
    Type: Application
    Filed: September 4, 2014
    Publication date: September 21, 2017
    Inventors: Ching-Pang Lee, Jae Y. Um, Zhengxiang Pu, Mohamed Abdullah, Eric Schroeder, Anthony Waywood
  • Publication number: 20170248024
    Abstract: A cooling system (10) positioned within a turbine airfoil (12) and having film cooling channels (16) positioned within inner and outer endwalls (18, 20) of the turbine airfoil (12), with cooling fluids supplied to the cooling channels (16) other than from an aft cooling chamber (22) to prevent blockages from developing within the film cooling channels (16) from debris that typically collects with the aft cooling chamber (22) during steady state operation of the turbine engine is disclosed. The cooling system (10) may include one or more midchord cooling channels (24) extending from a midchord cooling chamber (26) and including an outlet (28) positioned closer to a downstream edge (30) of the inner endwall (18) than an upstream wall (32) forming the aft cooling chamber (22).
    Type: Application
    Filed: September 8, 2014
    Publication date: August 31, 2017
    Inventors: Gm Salam Azad, Ching-Pang Lee, Alan A. Thrift, Daniel Joo, Johan K. Westin, Caleb Myers
  • Patent number: 9745853
    Abstract: A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: August 29, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Nan Jiang, Jae Y. Um, Harry Holloman, Steven Koester
  • Publication number: 20170232506
    Abstract: A die cast system in which an external shell and an internal core usable to form a component of a gas turbine engine are formed together is disclosed. In at least one embodiment, the external shell and internal core may be formed from at the same time via a selective laser melting process, thus eliminating the need for using the conventional lost-wax casting system. In at least one embodiment, the external shell and internal core may be formed a ceramic material that may support receiving molten metal to form a turbine component. Once formed, the external shell and internal core may be removed to reveal the turbine component.
    Type: Application
    Filed: October 15, 2014
    Publication date: August 17, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventor: Ching-Pang Lee
  • Publication number: 20170218787
    Abstract: Turbine and compressor casing/housing abradable component embodiments for turbine engines, have abradable surfaces with asymmetric forward and aft ridge surface area density. The forward ridges have greater surface area density than the aft ridges to compensate for greater ridge erosion in the forward zone during engine operation and reduce blade tip wear in the aft zone. Some abradable component embodiments increase forward zone ridge surface area density by incorporating wider ridges than those in the aft zone.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 3, 2017
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Erik Johnson, Eric Schroeder, Nicholas F. Martin, Jr.
  • Publication number: 20170198710
    Abstract: A compressor (10) configured for use in a gas turbine engine (12) and having a rotor assembly (14) with a pumping system (16) positioned on a rotor drum (18) to counteract reverse leakage flow at a gap (20) formed between one or more stator vane tips (22) and a radially outer surface (24) of the rotor drum (18). The pumping system (16) may be from pumping components (26) positioned radially inward of one or more stator vane tips (22) to reduce, if not completely eliminate, reverse leakage flow at the stator vane tips (22). In at least one embodiment, the pumping component (26) may be formed from one or more cutouts (28) in the outer surface (24) of the rotor drum (18). In another embodiment, the pumping component (26) may be formed from at least one pumping fin (30) extending from the radially outer surface (24) of the rotor drum (18). In at least one embodiment, rows (32) of pumping components (26) may be aligned with rows (34) of stator vanes (36) within the compressor (10).
    Type: Application
    Filed: August 8, 2014
    Publication date: July 13, 2017
    Inventors: Ching-Pang Lee, Kok-Mun Tham
  • Publication number: 20170183978
    Abstract: A shroud cooling system (100) configured to cool a shroud (50) adjacent to an airfoil within a gas turbine engine (10) is disclosed. The turbine engine shroud (50) may be formed from shroud segments (34) that include a plurality of cooling air supply channels (40) extending through a forward shroud support (52) for impingement of cooling air onto an outer radial surface of the shroud segment (34) with respect to the inner turbine section of the turbine engine (10). The channels (40) may extend at various angles (42) to increase cooling efficiency. The backside surface (62) may also include various cooling enhancement components configured to assist in directing, dispersing, concentrating, or distributing cooling air impinged thereon from the channels (40) to provide enhanced cooling at the backside surface (62).
    Type: Application
    Filed: August 22, 2014
    Publication date: June 29, 2017
    Inventors: Darryl Eng, Christopher Rawlings, Thomas Pechette, Friedrich T. Rogers, Jae Y. Um, Ching-Pang Lee