Patents by Inventor Ching-Pang Lee

Ching-Pang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9243511
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with zig-zag pattern abradable surface ridges and grooves. Some embodiments include distinct forward upstream and aft downstream composite multi orientation groove and vertically projecting ridges planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Ridge or rib embodiments have first lower and second upper wear zones. The lower zone optimizes engine airflow characteristics while the upper zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 26, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad
  • Patent number: 9234438
    Abstract: A component wall in a turbine engine includes a substrate and at least one cooling passage that extends through the substrate for delivering cooling fluid from a chamber associated with an inner surface of the substrate to an outer surface of the substrate. Each cooling passage is divided into at least two branches that receive cooling fluid from an entrance portion of the cooling passage that is in communication with the chamber. The branches each include an intermediate portion that extends transversely from the entrance portion and that receives cooling fluid from the entrance portion, and an exit portion that extends transversely from the respective intermediate portion. The exit portions receive the cooling fluid from the intermediate portions and deliver the cooling fluid out of the respective branch through exit portion outlets.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 12, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Ching-Pang Lee
  • Patent number: 9216451
    Abstract: A method of casting a component (42) having convoluted interior passageways (44). A desired three dimensional structure corresponding to a later-formed metal alloy component is formed by stacking a plurality of sheets (18, 20) of a fugitive material. The sheets contain void areas (22) corresponding to a desired interior passageway in the metal alloy component. A ceramic slurry material is cast into the three dimensional structure to form either a ceramic core (34) or a complete ceramic casting vessel (38). If just a ceramic core is formed, a wax pattern is formed around the ceramic core and an exterior ceramic shell (38) is formed around the wax pattern by a dipping process prior to the removal of the fugitive material and wax. An alloy component having the desired interior passageway is cast into the casting vessel after the fugitive material is removed.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: December 22, 2015
    Assignees: Mikro Systems, Inc., Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Gary B. Merrill, Andrew J. Burns
  • Patent number: 9206700
    Abstract: A support ring for a row of vanes in an engine section of a gas turbine engine includes an annular main body portion for providing structural support for a row of vanes in the engine section, an aft hook, a forward wall, and a strong back plate. The aft hook extends from an aft side of the main body portion and is coupled to an outer engine casing for structurally supporting the support ring in the engine section. The forward wall extends generally radially outwardly from a forward side of the main body portion. The strong back plate spans between the forward wall and the aft hook and effects a reduction in dynamic displacement between the forward wall and the aft hook during operation of the engine.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: December 8, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Mrinal Munshi, Adam C. Pela, Paul Bradley Davis, Matthew H. Lang
  • Patent number: 9206904
    Abstract: A seal member for effecting a seal preventing fluid flow in an axial direction through an annular space formed between two relatively moving components including a rotatable shaft and a stator structure. The seal member includes a plurality of flexible seal strips. Each seal strip includes a planar plate extending radially through the annular space and having a radially outer end supported to the stator structure and a radially inner end defining a tip portion extending widthwise in the axial direction engaged in sliding contact with a peripheral surface of the rotatable shaft. At least one of the seal strips includes a plurality of perforations extending through the seal strip and located between a leading edge and a trailing edge of the seal strip for effecting an increased flexibility of the seal strip adjacent to the tip portion.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 8, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Vincent P. Laurello, Chander Prakash, Kok-Mun Tham
  • Patent number: 9186757
    Abstract: A method of repairing a turbine blade having a radially extending outer wall defining an internal cavity width and a blade tip. The method comprises removing at least a portion of the blade tip to form a repair surface and providing a tip cap having a radially outer side with an outer width that may be less than the internal cavity width, and having a radially inner side with an inner width that is substantially equal to or greater than the internal cavity width. The tip cap is positioned at the repair surface, and the tip cap is welded to the repair surface using a ductile welding material. A cap peripheral portion is formed by build-up welding around the tip cap, and a squealer portion is formed by build-up welding on the cap peripheral portion.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: November 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Mrinal Munshi, Ching-Pang Lee, Benjamin P. Swanson, Petya M. Georgieva, James A. Morin
  • Patent number: 9181816
    Abstract: A seal assembly between a disc cavity and a hot gas path in a gas turbine engine includes a stationary vane assembly and a rotating blade assembly axially upstream from the vane assembly. A platform of the blade assembly has a radially outwardly facing first surface, an axially downstream facing second surface defining an aft plane, and a plurality of grooves extending into the second surface such that the grooves are recessed from the aft plane The grooves are arranged such that a circumferential space is defined between adjacent grooves During operation of the engine, the grooves impart a circumferential velocity component to purge air flowing out of a disc cavity through the grooves to guide the purge air toward a hot gas path such that the purge air flows in a desired direction with reference to a direction of hot gas flow through the hot gas path.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 10, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Eric Schroeder, Erik Johnson, Dustin Muller, Steven Coppess, Manjit Shivanand, Kahwai G. Muriithi
  • Patent number: 9181819
    Abstract: A film cooling structure formed in a component wall of a turbine engine and a method of making the film cooling structure. The film cooling structure includes a plurality of individual diffusion sections formed in the wall, each diffusions section including a single cooling passage for directing cooling air toward a protuberance of a wall defining the diffusion section. The film cooling structure may be formed with a masking template including apertures defining shapes of a plurality of to-be-formed diffusion sections in the wall. A masking material can be applied to the wall into the apertures in the masking template so as to block outlets of cooling passages exposed through the apertures. The masking template can be removed and a material may be applied on the outer surface of the wall such that the material defines the diffusion sections once the masking material is removed.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 10, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Jae Y. Um, Mrinal Munshi, Humberto A. Zuniga
  • Patent number: 9151175
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting alternating rows of first and second height ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. The first ridges have a first ridge height greater than that of the second ridges. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, at and below the second ridge height, optimizes engine airflow characteristics, while the upper zone, between tips of the second and first ridges, is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: October 6, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Kok-Mun Tham, Vincent P. Laurello, Ching-Pang Lee, Gm Salam Azad, Nicholas F. Martin, Jr., David G. Sansom, Neil Hitchman
  • Patent number: 9132476
    Abstract: A multi-wall gas turbine airfoil (192) and method of forming same using a casting core (150) having a monolithic body configured to define a pressure side wall (12), a suction side wall (14), and a third wall (16). The casting core is formed around a fugitive insert (96) during a single pour casting process.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 15, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Gary B. Merrill
  • Patent number: 9133721
    Abstract: A cooling system for a transition duct for routing a gas flow from a combustor to the first stage of a turbine section in a combustion turbine engine is disclosed. The transition duct may have a multi-panel outer wall formed from an inner panel having an inner surface that defines at least a portion of a hot gas path plenum and an intermediate panel positioned radially outward from the inner panel such that at least one cooling chamber is formed between the inner and intermediate panels. The transition duct may also include an outer panel. The inner, intermediate and outer panels may include one or more metering holes for passing cooling fluids between cooling chambers for cooling the panels. The intermediate and outer panels may be secured with an attachment system coupling the panels to the inner panel such that the intermediate and outer panels may move in-plane.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 15, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Jay A. Morrison
  • Patent number: 9121298
    Abstract: A seal assembly provided between a hot gas path and a disc cavity in a turbine engine includes an annular outer wing member extending from an axially facing side of a rotor structure toward an adjacent non-rotating vane assembly, and a plurality of fins extending radially inwardly from the outer wing member and extending toward the adjacent non-rotating vane assembly. The fins are arranged such that a space having a component in a circumferential direction is defined between adjacent fins. Rotation of the fins during operation of the engine effects a pumping of purge air from the disc cavity toward the hot gas path to assist in limiting hot working gas leakage from the hot gas path to the disc cavity by forcing the hot working gas away from the seal assembly.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 1, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Kok-Mun Tham, John M. Owen, Gary D. Lock, Carl M. Sangan, Vincent P. Laurello
  • Patent number: 9120144
    Abstract: A casting core (200) for a twisted gas turbine engine blade, including: an airfoil portion (202) having: an airfoil base end (208), an airfoil tip end (210), a concave side exterior surface (212), a convex side exterior surface (214), a leading edge (204), and a trailing edge (206). The airfoil portion is twisted in a radial direction from the airfoil base end to the airfoil tip end. The airfoil portion includes a first void (220) between the concave side exterior surface and the convex side exterior surface and extending radially to define the shape of a rib of an airfoil to be cast around the core. A first leading edge surface and a first trailing edge surface of the void are twisted from the airfoil base end to the airfoil tip end.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: September 1, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Ching-Pang Lee
  • Publication number: 20150240652
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Gm Salam Azad, Zhihong Gao, Neil Hitchman, Nicholas F. Martin, JR., David G. Sansom, Ramesh Subramanian
  • Publication number: 20150240651
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting alternating rows of first and second height ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. The first ridges have a first ridge height greater than that of the second ridges. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, at and below the second ridge height, optimizes engine airflow characteristics, while the upper zone, between tips of the second and first ridges, is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Kok-Mun Tham, Vincent P. Laurello, Ching-Pang Lee, Gm Salam Azad, Nicholas F. Martin, JR., David G. Sansom, Neil Hitchman
  • Publication number: 20150240653
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with zig-zag pattern abradable surface ridges and grooves. Some embodiments include distinct forward upstream and aft downstream composite multi orientation groove and vertically projecting ridges planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Ridge or rib embodiments have first lower and second upper wear zones. The lower zone optimizes engine airflow characteristics while the upper zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad
  • Patent number: 9097117
    Abstract: A cooling system for a transition duct for routing a gas flow from a combustor to the first stage of a turbine section in a combustion turbine engine is disclosed. The transition duct may have a multi-panel outer wall formed from an inner panel having an inner surface that defines at least a portion of a hot gas path plenum and an intermediate panel positioned radially outward from the inner panel such that at least one cooling chamber is formed between the inner and intermediate panels. The transition duct may also include an outer panel. The inner, intermediate and outer panels may include one or more metering holes for passing cooling fluids between cooling chambers for cooling the panels. The intermediate and outer panels may be secured with an attachment system coupling the panels to the inner panel such that the intermediate and outer panels may move in-plane.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: August 4, 2015
    Assignee: SIEMENS ENERGY, INC
    Inventors: Richard C. Charron, Daniel J. Pierce, Jay A. Morrison, Ching-Pang Lee, Kenneth K. Landis, Walter Marussich
  • Patent number: 9091495
    Abstract: A cooling passage defined between first and second spaced apart sidewalls of a turbine engine component includes a turbulator system including a plurality of rows of turbulator members. Each row includes a first side turbulator member extending from the first sidewall, and a second side turbulator member extending from the second sidewall. The first and second side turbulator members are arranged such that a space is defined therebetween. The first and second side turbulator members are staggered with respect to one another such that respective forward and aft ends thereof are offset from one another. Each row further includes at least one elongate intermediate turbulator member located at least partially in the space between the respective first and second side turbulator members.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: July 28, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Ching-Pang Lee
  • Publication number: 20150204197
    Abstract: An airfoil cooling arrangement (12), including: a leading edge chamber (54) configured to cool an interior surface (68) of an airfoil; and an impingement orifice (60) configured to direct an impingement jet (64) toward an impingement location (66) disposed on the interior surface and offset from a camber line (28) of the airfoil The airfoil cooling arrangement is effective to guide post impingement cooling fluid along the interior surface, through a leading portion (76) of the leading edge chamber, and then back toward a trailing edge (22) of the airfoil in a helical motion (114).
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Eric Schroeder, Erik Johnson
  • Patent number: 9085981
    Abstract: A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72) is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: July 21, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Jay A. Morrison