Patents by Inventor Ching-Wen Hsiao

Ching-Wen Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130181325
    Abstract: A discrete Through-Assembly Via (TAV) module includes a substrate, and vias extending from a surface of the substrate into the substrate. The TAV module is free from conductive features in contact with one end of each of the conductive vias.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao
  • Publication number: 20130182402
    Abstract: A device includes a Through-Assembly Via (TAV) Module, which includes a substrate, a plurality of through-vias penetrating through the substrate, and a second plurality of metal posts at a bottom surface of the TAV module and electrically coupled to the plurality of through-vias. A polymer includes a first portion between and contacting sidewalls of the first package component and the TAV module, a second portion disposed between the first plurality of metal posts, and a third portion disposed between the second plurality of metal posts. A first plurality of Redistribution Lines (RDLs) is underlying a bottom surface of the second and the third portions of the polymer. A second plurality of RDLs is over the first package component and the TAV module. The first plurality of RDLs is electrically coupled to the second plurality of RDLs through the plurality of through-vias in the TAV module.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao
  • Publication number: 20130119539
    Abstract: A device includes a redistribution line, and a polymer region molded over the redistribution line. The polymer region includes a first flat top surface. A solder region is disposed in the polymer region and electrically coupled to the redistribution line. The solder region includes a second flat top surface not higher than the first flat top surface.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Hsiao, Ming-Da Cheng, Chih-Wei Lin, Chen-Shien Chen, Chih-Hua Chen, Chen-Cheng Kuo
  • Publication number: 20130056872
    Abstract: A method includes placing a plurality of bottom units onto a jig, wherein the plurality of bottom units is not sawed apart and forms an integrated component. Each of the plurality of bottom units includes a package substrate and a die bonded to the package substrate. A plurality of upper component stacks is placed onto the plurality of bottom units, wherein solder balls are located between the plurality of upper component and the plurality of bottom units. A reflow is performed to join the plurality of upper component stacks with respective ones of the plurality of bottom units through the solder balls.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Juin Liu, Chita Chuang, Ching-Wen Hsiao, Chen-Shien Chen, Chen-Cheng Kuo, Chih-Hua Chen
  • Publication number: 20130032923
    Abstract: A system and method for providing an integrated inductor with a high Quality factor (Q) is provided. An embodiment comprises a magnetic core that is in a center of a conductive spiral. The magnetic core increases the inductance of the integrated inductor to allow the inductor to be used in applications such as a RF choke. The magnetic core may be formed in the same manner and time as an underbump metallization.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Liang Lin, Mirng-Ji Lii, Chen-Shien Chen, Ching-Wen Hsiao, Tsung-Ding Wang
  • Publication number: 20130009303
    Abstract: A package-on-package (PoP) comprises a substrate with a plurality of substrate traces, a first function chip on top of the substrate connected to the substrate by a plurality of bond-on-trace connections, and a second function chip on top of the first function chip, directly connected to the substrate. Another package-on-package (PoP) comprises: a substrate with a plurality of substrate traces, a first function chip on top of the substrate connected to the substrate by a plurality of solder mask defined (SMD) connections formed on SMD bonding pads connected to solder bumps, and a second function chip on top of the first function chip, directly connected to the substrate by a plurality of bond-on-trace connections.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Chun Tsai, Sheng-Yu Wu, Ching-Wen Hsiao, Tin-Hao Kuo, Chen-Shien Chen, Chung-Shi Liu, Chien-Hsiun Lee, Mirng-Ji Lii
  • Patent number: 8349628
    Abstract: An embodiment of the disclosure includes a method of fabricating a plurality of light emitting diode devices. A plurality of LED dies is provided. The LED dies are bonded to a carrier substrate. A patterned mask layer comprising a plurality of openings is formed on the carrier substrate. Each one of the plurality of LED dies is exposed through one of the plurality of the openings respectively. Each of the plurality of openings is filled with a phosphor. The phosphor is cured. The phosphor and the patterned mask layer are polished to thin the phosphor covering each of the plurality of LED dies. The patterned mask layer is removed after polishing the phosphor.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 8, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Yung-Chang Chen, Hsin-Hsien Wu, Chyi Shyuan Chern, Ching-Wen Hsiao, Fu-Wen Liu, Kuang-Huan Hsu
  • Patent number: 8318596
    Abstract: A conductive pillar for a semiconductor device is provided. The conductive pillar is formed such that a top surface is non-planar. In embodiments, the top surface may be concave, convex, or wave shaped. An optional capping layer may be formed over the conductive pillar to allow for a stronger inter-metallic compound (IMC) layer. The IMC layer is a layer formed between solder material and an underlying layer, such as the conductive pillar or the optional capping layer.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 27, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tin-Hao Kuo, Chen-Shien Chen, Ching-Wen Hsiao
  • Publication number: 20120292629
    Abstract: A method includes providing an LED element including a substrate and a gallium nitride (GaN) layer disposed on the substrate. The GaN layer is treated. The treatment includes performing an ion implantation process on the GaN layer. The ion implantation process may provide a roughened surface region of the GaN layer. In an embodiment, the ion implantation process is performed at a temperature of less than approximately 25 degrees Celsius. In a further embodiment, the substrate is at a temperature less than approximately zero degrees Celsius during the ion implantation process.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Hsin-Hsien Wu, Chyi Shyuan Chern, Chun-Lin Chang, Ching-Wen Hsiao, Kuang-Huan Hsu
  • Patent number: 8314482
    Abstract: This invention relates to a wafer-leveled chip packaging method, comprising the steps of: providing a wafer; attaching at least one first chip to the wafer; forming a first insulating layer on the wafer; forming a plurality of first conductive vias penetrating the first insulating layer, wherein parts of the first conductive vias are electrically connected with the first chip; forming a conductive pattern layer on the surface of the first insulating layer wherein the conductive pattern layer is electrically connected with the first conductive vias; forming a plurality of through holes penetrating the wafer; filling a second insulating layer in the through holes; and forming a plurality of second conductive vias in the second insulating layer, wherein the second conductive vias are electrically connected with the first conductive vias.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: November 20, 2012
    Assignee: Invensas Corporation
    Inventors: Shou-Lung Chen, Ching-Wen Hsiao, Yu-Hua Chen, Jeng-Dar Ko, Chih-Ming Tzeng, Jyh-Rong Lin, Shan-Pu Yu
  • Patent number: 8299616
    Abstract: A T-shaped post for semiconductor devices is provided. The T-shaped post has an under-bump metallization (UBM) section and a pillar section extending from the UBM section. The UBM section and the pillar section may be formed of a same material or different materials. In an embodiment, a substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like, having T-shaped posts is attached to a contact of another substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like. The T-shaped posts may have a solder material pre-formed on the pillar section such that the pillar section is exposed or such that the pillar section is covered by the solder material. In another embodiment, the T-shaped posts may be formed on one substrate and the solder material formed on the other substrate.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 30, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Chen-Cheng Kuo, Ching-Wen Hsiao, Chen-Shien Chen
  • Publication number: 20120270369
    Abstract: Methods for forming lead free solder interconnections for integrated circuits. A copper column extends from an input/output terminal of an integrated circuit. A cap layer of material is formed on the input/output terminal of the integrated circuit. A lead free solder connector is formed on the cap layer. A substrate having a metal finish solder pad is aligned with the solder connector. An intermetallic compound is formed at the interface between the cap layer and the lead free solder connector. A solder connection is formed between input/output terminal of the integrated circuit and the metal finish pad that is less than 0.5 weight percent copper, and the intermetallic compound is substantially free of copper.
    Type: Application
    Filed: July 2, 2012
    Publication date: October 25, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yao-Chun Chuang, Ching-Wen Hsiao, Chen-Cheng Kuo, Chen-Shien Chen
  • Publication number: 20120267765
    Abstract: A wafer-leveled chip packaging method, comprising the steps of: providing a wafer; attaching at least one first chip to the wafer; forming a first insulating layer on the wafer; forming a plurality of first conductive vias penetrating the first insulating layer, wherein parts of the first conductive vias are electrically connected with the first chip; forming a conductive pattern layer on the surface of the first insulating layer wherein the conductive pattern layer is electrically connected with the first conductive vias; forming a plurality of through holes penetrating the wafer; filling a second insulating layer in the through holes; and forming a plurality of second conductive vias in the second insulating layer, wherein the second conductive vias are electrically connected with the first conductive vias.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Applicant: Industrial Technology Research Institute
    Inventors: Shou-Lung CHEN, Ching-Wen Hsiao, Yu-Hua Chen, Jeng-Dar Ko, Chih-Ming Tzeng, Jyh-Rong Lin, Shan-Pu Yu
  • Publication number: 20120244652
    Abstract: An embodiment of the disclosure includes a method of fabricating a plurality of light emitting diode devices. A plurality of LED dies is provided. The LED dies are bonded to a carrier substrate. A patterned mask layer comprising a plurality of openings is formed on the carrier substrate. Each one of the plurality of LED dies is exposed through one of the plurality of the openings respectively. Each of the plurality of openings is filled with a phosphor. The phosphor is cured. The phosphor and the patterned mask layer are polished to thin the phosphor covering each of the plurality of LED dies. The patterned mask layer is removed after polishing the phosphor.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yung-Chang CHEN, Hsin-Hsien WU, Chyi Shyuan CHERN, Ching-Wen HSIAO, Fu-Wen LIU, Kuang-Huan HSU
  • Patent number: 8232643
    Abstract: Lead free solder interconnections for integrated circuits. A copper column extends from an input/output terminal of an integrated circuit. A cap layer of material is formed on the input/output terminal of the integrated circuit. A lead free solder connector is formed on the cap layer. A substrate having a metal finish solder pad is aligned with the solder connector. An intermetallic compound is formed at the interface between the cap layer and the lead free solder connector. A solder connection is formed between the input/output terminal of the integrated circuit and the metal finish pad that is less than 0.5 weight percent copper, and the intermetallic compound is substantially free of copper.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Ching-Wen Hsiao, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 8178970
    Abstract: A flip-chip packaging assembly and integrated circuit device are disclosed. An exemplary flip-chip packaging assembly includes a first substrate; a second substrate; and joint structures disposed between the first substrate and the second substrate. Each joint structure comprises an interconnect post between the first substrate and the second substrate and a joint solder between the interconnect post and the second substrate, wherein the interconnect post exhibits a width and a first height. A pitch defines a distance between each joint structure. The first height is less than half the pitch.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: May 15, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Wei Shen, Chen-Shien Chen, Chen-Cheng Kuo, Chih-Hua Chen, Ching-Wen Hsiao
  • Patent number: 8158489
    Abstract: An integrated circuit structure includes a semiconductor wafer, which includes a first notch extending from an edge of the semiconductor wafer into the semiconductor wafer. A carrier wafer is mounted onto the semiconductor wafer. The carrier wafer has a second notch overlapping at least a portion of the first notch. A side of the carrier wafer facing the semiconductor wafer forms a sharp angle with an edge of the carrier wafer. The carrier wafer has a resistivity lower than about 1×108 Ohm-cm.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hon-Lin Huang, Ching-Wen Hsiao, Kuo-Ching Hsu, Chen-Shien Chen
  • Publication number: 20120033688
    Abstract: The present invention provides a single frequency fiber laser apparatus. The fiber laser apparatus includes a Faraday rotator mirror. A piece of erbium doped fiber is inside the laser cavity. A wavelength selective coupler is connected to the erbium doped fiber. A pump source is coupled via the wavelength selective coupler. At least one sub-ring cavity component and/or an absorb component are inserted into the cavity for facilitating suppressing laser side modes to create a single longitudinal mode fiber laser. A partial reflectance fiber Bragg grating (FBG) is used as the front cavity end for this fiber laser.
    Type: Application
    Filed: January 24, 2011
    Publication date: February 9, 2012
    Applicant: National Taiwan University of Science and Technology
    Inventors: Shien-Kuei Liaw, Hsiang Wang, Kai-Hsiang Hsu, Fu-Chun Hung, Ching-Wen Hsiao
  • Patent number: 8101499
    Abstract: An integrated circuit structure includes a semiconductor wafer, which includes a first notch extending from an edge of the semiconductor wafer into the semiconductor wafer. A carrier wafer is mounted onto the semiconductor wafer. The carrier wafer has a second notch overlapping at least a portion of the first notch. A side of the carrier wafer facing the semiconductor wafer forms a sharp angle with an edge of the carrier wafer. The carrier wafer has a resistivity lower than about 1×108 Ohm-cm.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hon-Lin Huang, Ching-Wen Hsiao, Kuo-Ching Hsu, Chen-Shien Chen
  • Patent number: 8097953
    Abstract: A system, a structure and a method of manufacturing stacked semiconductor substrates is presented. A first substrate includes a first side and a second side. A through substrate via (TSV) protrudes from the first side of the first substrate. A first protruding portion of the TSV has a conductive protective coating and a second protruding portion of the TSV has an isolation liner. The system further includes a second substrate and a joint interface structure that bonds the second substrate to the first substrate at the conductive protective coating of the first protruding portion of the TSV.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hong Tseng, Kai-Ming Ching, Chen-Shien Chen, Ching-Wen Hsiao, Hon-Lin Huang, Tsung-Ding Wang