Patents by Inventor Ching-Yu Chen

Ching-Yu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250000987
    Abstract: A compound or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition thereof are provided, wherein the compound includes a retinoic acid conjugated with a carbohydrate. In addition, use of the compound or the pharmaceutically acceptable salt thereof or the pharmaceutical composition in the manufacture of a medicament for inhibiting infection or replication of a virus or for treating a cancer is also provided.
    Type: Application
    Filed: September 5, 2024
    Publication date: January 2, 2025
    Inventors: Ching-Yu Chen, Bo-Lin Lin
  • Publication number: 20240423942
    Abstract: A pharmaceutical composition including a retinoic acid and a carbohydrate is provided. The pharmaceutical composition may further include a metal ion. Use of the pharmaceutical composition in the manufacture of a medicament for inhibiting infection or replication of a virus or for treating a cancer is also provided. The pharmaceutical composition can enhance the inhibition ability of virus infection and/or or replication in comparison with the retinoic acid used only.
    Type: Application
    Filed: September 5, 2024
    Publication date: December 26, 2024
    Inventors: Ching-Yu Chen, Junjen Liu, Chi-Fu Yen, Bo-Lin Lin
  • Publication number: 20240387719
    Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 21, 2024
    Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
  • Patent number: 12009516
    Abstract: A fast charging lithium-ion battery includes a positive electrode plate, a negative electrode plate, a separator, and an electrolyte. The positive electrode plate includes a positive current collector and a positive active material layers. The negative electrode plate includes a negative current collector and negative active material layers. The negative active material layers include titanium niobium oxide, lithium titanate, or a combination thereof. The separator is disposed between the positive electrode plate and the negative electrode plate. The electrolyte contacts the positive electrode plate and the negative electrode plate. The negative active material layers have an effective area corresponding to the positive electrode plate. The negative active material layers have a thickness on one surface of the negative current collector. A ratio of the effective area to the thickness is greater than 2×105 mm.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: June 11, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Deng-Tswen Shieh, Sheng-Fa Yeh, Shih-Chieh Liao, Ching-Yu Chen, Hao-Tzu Huang
  • Publication number: 20240141553
    Abstract: A manufacturing process is described to evaluate and select raw semiconductor wafers in preparation for epitaxial layer formation. The manufacturing process first produces a single crystal ingot during which a seed pulling velocity and temperature gradient are closely controlled. The resulting ingot is vacancy-rich with relatively few self-interstitial defects. Selected wafers can advance to a high-temperature nitridation annealing operation that further reduces the number of interstitials while increasing the vacancies. Substrates characterized by a high vacancy density can then be used to optimize an epitaxial layer deposition process.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pu-Fang CHEN, Ching Yu Chen
  • Publication number: 20240088284
    Abstract: Disclosed is a semiconductor device and a method for fabricating such semiconductor device, specifically a High Electron Mobility Transistor (HEMT) with a back barrier layer for blocking electron leakage and improve threshold voltage. In one embodiment, a semiconductor device, includes: a Gallium Nitride (GaN) layer; a front barrier layer over the GaN layer; a source electrode, a drain electrode and a gate electrode formed over the front barrier layer; a 2-Dimensional Electron Gas (2-DEG) in the GaN layer at a first interface between the GaN layer and the front barrier layer; and a back barrier layer in the GaN layer, wherein the back barrier layer comprises Aluminum Nitride (AlN).
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Chia-Ling YEH, Pravanshu MOHANTA, Ching-Yu CHEN, Jiang-He XIE, Yu-Shine LIN
  • Publication number: 20240079486
    Abstract: A semiconductor structure includes a barrier layer over a channel layer, and a doped layer over the barrier layer. A gate electrode is over the doped layer and a doped interface layer is formed between the barrier layer and the doped layer. The doped interface layer includes a dopant and a metal. The metal has a metal concentration that follows a gradient function from a highest metal concentration to a lowest metal concentration.
    Type: Application
    Filed: March 27, 2023
    Publication date: March 7, 2024
    Inventors: Wei-Ting CHANG, Ching Yu CHEN, Jiang-He XIE
  • Publication number: 20240022961
    Abstract: A network connection control system and method is provided. The network connection control system includes user equipments, base stations, a server and first and second processing units. Each user equipment transmits a network parameter between it and every base station to the server through the base station connected therewith. The first processing unit assigns CIO set values corresponding to the base station. The network connection control system is configured to perform an optimizing procedure. In the optimizing procedure, according to the CIO set values, the network parameters, the throughput objective function and connection and network resource constraints of all the user equipments and base stations, the first and second processing units processes based on classical algorithm and quantum annealing algorithm respectively to obtain the optimized connection configuration.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Inventors: Tsung-Hsuan Tsai, Yi-Ching Chen, Ching-Yu Chen
  • Patent number: 11855199
    Abstract: Disclosed is a semiconductor device and a method for fabricating such semiconductor device, specifically a High Electron Mobility Transistor (HEMT) with a back barrier layer for blocking electron leakage and improve threshold voltage. In one embodiment, a semiconductor device, includes: a Gallium Nitride (GaN) layer; a front barrier layer over the GaN layer; a source electrode, a drain electrode and a gate electrode formed over the front barrier layer; a 2-Dimensional Electron Gas (2-DEG) in the GaN layer at a first interface between the GaN layer and the front barrier layer; and a back barrier layer in the GaN layer, wherein the back barrier layer comprises Aluminum Nitride (AlN).
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ling Yeh, Pravanshu Mohanta, Ching-Yu Chen, Jiang-He Xie, Yu-Shine Lin
  • Patent number: 11843042
    Abstract: Structures and methods for controlling dopant diffusion and activation are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a channel layer; a barrier layer over the channel layer; a gate electrode over the barrier layer; and a doped layer formed between the barrier layer and the gate electrode. The doped layer includes (a) an interface layer in contact with the barrier layer and (b) a main layer between the interface layer and the gate electrode. The doped layer comprises a dopant whose doping concentration in the interface layer is lower than that in the main layer.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Yu Chen, Wei-Ting Chang, Yu-Shine Lin, Jiang-He Xie
  • Publication number: 20230387282
    Abstract: A method of manufacturing a High-Electron-Mobility Transistor (HEMT) includes: preparing a substrate; forming a first buffer over the substrate; forming a second buffer over the first buffer, wherein forming the second buffer includes doping a first thickness of a material such as gallium nitride (GaN) with a first concentration of a dopant such as carbon, and doping a second thickness of the material with a second concentration of the dopant such that the second concentration of dopant has a gradient though the second thickness which progressively decreases in a direction away from the first thickness; forming a channel layer such as a GaN channel over the second buffer; forming a barrier layer such as aluminum gallium nitride (AlGaN) over the channel layer; and forming drain, source and gate terminals for the HEMT.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Pravanshu Mohanta, Wei-Ting Chang, Ching Yu Chen, Jiang-He Xie
  • Publication number: 20230377881
    Abstract: Strain relief trenches may be formed in a substrate prior to growth of an epitaxial layer on the substrate. The trenches may reduce the stresses and strains on the epitaxial layer that occur during the epitaxial growth process due to differences in material properties (e.g., lattice mismatches, differences in thermal expansion coefficients, and/or the like) between the epitaxial layer material and the substrate material. The stress and strain relief provided by the trenches may reduce or eliminate cracks and/or other types of defects in the epitaxial layer and the substrate, may reduce and/or eliminate bowing and warping of the substrate, may reduce breakage of the substrate, and/or the like. This may increase the center-to-edge quality of the epitaxial layer, may permit epitaxial layers to be grown on larger substrates, and/or the like.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Yi-Chuan LO, Pravanshu MOHANTA, Jiang-He XIE, Ching Yu CHEN, Ming-Tsung CHEN, Chia-Ling YEH
  • Patent number: 11804374
    Abstract: Strain relief trenches may be formed in a substrate prior to growth of an epitaxial layer on the substrate. The trenches may reduce the stresses and strains on the epitaxial layer that occur during the epitaxial growth process due to differences in material properties (e.g., lattice mismatches, differences in thermal expansion coefficients, and/or the like) between the epitaxial layer material and the substrate material. The stress and strain relief provided by the trenches may reduce or eliminate cracks and/or other types of defects in the epitaxial layer and the substrate, may reduce and/or eliminate bowing and warping of the substrate, may reduce breakage of the substrate, and/or the like. This may increase the center-to-edge quality of the epitaxial layer, may permit epitaxial layers to be grown on larger substrates, and/or the like.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chuan Lo, Pravanshu Mohanta, Jiang-He Xie, Ching Yu Chen, Ming-Tsung Chen, Chia-Ling Yeh
  • Patent number: 11715792
    Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
  • Publication number: 20230223987
    Abstract: A spread spectrum switching converter converts an input power to an output power. The spread spectrum switching converter includes a pulse width modulation (PWM) circuit and a pulse omission control circuit. The PWM circuit generate an initial PWM signal according to a feedback signal related to the output power. The initial PWM signal controls at least one switch to switch an inductor to generate the output power. The pulse omission control circuit generates a pulse omission control signal to mask a portion of pulses of the initial PWM signal, to thereby generate an adjusted PWM signal. The pulse omission control circuit randomly adjusts the pulse width of the pulse omission control signal according to a random control signal, such that the adjusted PWM signal has a spread spectrum characteristic.
    Type: Application
    Filed: October 28, 2022
    Publication date: July 13, 2023
    Inventors: Jung-Sheng Chen, Chin-Yen Lin, Ching-Yu Chen, Ting-Jung Lo, Hsing-Shen Huang
  • Patent number: 11522067
    Abstract: A high electron mobility transistor (HEMT) device and a method of forming the same are provided. The method includes forming a first III-V compound layer over a substrate. A second III-V compound layer is formed over the first III-V compound layer. The second III-V compound layer has a greater band gap than the first III-V compound layer. A third III-V compound layer is formed over the second III-V compound layer. The third III-V compound layer and the first III-V compound layer comprise a same III-V compound. A passivation layer is formed along a topmost surface and sidewalls of the third III-V compound layer. A fourth III-V compound layer is formed over the second III-V compound layer. The fourth III-V compound layer has a greater band gap than the first III-V compound layer.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ling Yeh, Ching Yu Chen
  • Publication number: 20220384630
    Abstract: Disclosed is a semiconductor device and a method for fabricating such semiconductor device, specifically a High Electron Mobility Transistor (HEMT) with a back barrier layer for blocking electron leakage and improve threshold voltage. In one embodiment, a semiconductor device, includes: a Gallium Nitride (GaN) layer; a front barrier layer over the GaN layer; a source electrode, a drain electrode and a gate electrode formed over the front barrier layer; a 2-Dimensional Electron Gas (2-DEG) in the GaN layer at a first interface between the GaN layer and the front barrier layer; and a back barrier layer in the GaN layer, wherein the back barrier layer comprises Aluminum Nitride (AIN).
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: Chia-Ling YEH, Pravanshu Mohanta, Ching-Yu Chen, Jiang-He Xie, Yu-Shine Lin
  • Publication number: 20220376086
    Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
  • Publication number: 20220140123
    Abstract: Disclosed is a semiconductor device and a method for fabricating such semiconductor device, specifically a High Electron Mobility Transistor (HEMT) with a back barrier layer for blocking electron leakage and improve threshold voltage. In one embodiment, a semiconductor device, includes: a Gallium Nitride (GaN) layer; a front barrier layer over the GaN layer; a source electrode, a drain electrode and a gate electrode formed over the front barrier layer; a 2-Dimensional Electron Gas (2-DEG) in the GaN layer at a first interface between the GaN layer and the front barrier layer; and a back barrier layer in the GaN layer, wherein the back barrier layer comprises Aluminum Nitride (AlN).
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Chia-Ling YEH, Pravanshu MOHANTA, Ching-Yu CHEN, Jiang-He XIE, Yu-Shine LIN
  • Publication number: 20220130670
    Abstract: Strain relief trenches may be formed in a substrate prior to growth of an epitaxial layer on the substrate. The trenches may reduce the stresses and strains on the epitaxial layer that occur during the epitaxial growth process due to differences in material properties (e.g., lattice mismatches, differences in thermal expansion coefficients, and/or the like) between the epitaxial layer material and the substrate material. The stress and strain relief provided by the trenches may reduce or eliminate cracks and/or other types of defects in the epitaxial layer and the substrate, may reduce and/or eliminate bowing and warping of the substrate, may reduce breakage of the substrate, and/or the like. This may increase the center-to-edge quality of the epitaxial layer, may permit epitaxial layers to be grown on larger substrates, and/or the like.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Yi-Chuan LO, Pravanshu MOHANTA, Jiang-He XIE, Ching Yu CHEN, Ming-Tsung CHEN, Chia-Ling YEH