Patents by Inventor Christian Schroter

Christian Schroter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110253886
    Abstract: An X-ray detector includes a directly converting semiconductor layer for converting an incident radiation into electrical signals with a band gap energy characteristic of the semiconductor layer, and at least one light source for coupling light into the semiconductor layer, wherein the generated light, for the simulation of incident X-ray quanta, has an energy above the band gap energy of the semiconductor layer. In at least one embodiment, it includes at least one evaluation unit for calculating an evaluation signal from the electrical signals generated when the light is coupled into the semiconductor layer, and at least one calibration unit for calibrating at least one pulse discriminator on the basis of the evaluation signal. This provides the prerequisites for a rapidly repeatable calibration of the X-ray detector taking account of the present polarization state without using X-ray radiation. At least one embodiment of the invention additionally relates to a calibration method for such an X-ray detector.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Hackenschmied, Christian Schroter, Matthias Strassburg
  • Publication number: 20110186788
    Abstract: A radiation converter material includes a semiconductor material used for directly converting radiation quanta into electrical charge carriers. In at least one embodiment, the semiconductor material includes a dopant in a dopant concentration and defect sites produced in a process-dictated manner in such a way that the semiconductor material includes an ohmic resistivity in a range of between 5·107 ?·cm and 2·109 ?·cm. Such a radiation converter material is particularly well matched to the requirements in particular in human-medical applications with regard to the high flux rate present and the spectral distribution of the radiation quanta. In at least one embodiment, the invention additionally relates to a radiation converter and a radiation detector, and a use of and a method for producing such a radiation converter material.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter HACKENSCHMIED, Christian SCHRÖTER, Matthias STRASSBURG
  • Publication number: 20100246758
    Abstract: An X-ray radiation detector is disclosed for detecting ionizing radiation, in particular for use in a CT system, with a multiplicity of detector elements. In at least one embodiment, each detector element includes a semiconductor used as detector material with an upper side facing the radiation and a lower side facing away from the radiation, at least two electrodes, wherein one electrode is formed on the upper side of the semiconductor by a metallization layer, and the sum of all detector elements forms a base, which has a base normal at each point. In at least one embodiment, the invention is distinguished by the fact that the upper side of the semiconductor has a surface structure with a surface normal at each point, wherein the surface normal at least in part subtends an angle to the base normal.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 30, 2010
    Inventors: Peter Hackenschmied, Christian Schröter, Matthias Strassburg
  • Publication number: 20100127182
    Abstract: At least one embodiment of the invention relates to an X-ray radiation detector, in particular for use in a CT system. In at least one embodiment, the X-ray radiation detector includes a semiconductor material used for detection, at least two ohmic contacts between the semiconductor material and a contact material, the semiconductor material and contact material each having a specific excitation energy of the charge carriers, with the excitation energy of the contact material corresponding to the excitation energy of the semiconductor material. At least one embodiment of the invention furthermore relates to a CT system in which an X-ray radiation detector is used, the X-ray radiation detector advantageously having at least two ideal ohmic contacts according to at least one embodiment of the invention.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 27, 2010
    Inventors: Peter Hackenschmied, Christian Schröter, Matthias Strassburg
  • Publication number: 20100074397
    Abstract: A method is disclosed for detecting X-ray radiation from an X-ray emitter. In at least one embodiment of the method, an electric pulse with a pulse amplitude characteristic of the energy of a quantum is generated when a quantum of the X-ray radiation impinges on a sensor, wherein a number of threshold energies are predetermined. When the pulse amplitude corresponding to the respective energy is exceeded, a signal is emitted each time the pulse amplitude corresponding to a respective threshold energy is exceeded. At least one embodiment of the method permits reliable and high-quality imaging, even in image regions with high X-ray quanta rates. To this end, at least one of the threshold energies is predetermined such that it is higher than the maximum energy of the X-ray spectrum emitted by the X-ray emitter.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 25, 2010
    Inventors: Steffen Kappler, Christian Schröter, Karl Stierstorfer, Matthias Strassburg