Patents by Inventor Christine Frysz

Christine Frysz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180233949
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Ajit Rajagopalan, Mark D. Melone, Oleg Los, Ryan M. Fitzpatrick, Jacob D. Babcock, Vinit Singh, Christine A. Frysz
  • Publication number: 20180233958
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Ajit Rajagopalan, Jacob D. Babcock, Christine A. Frysz
  • Publication number: 20180233960
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Jacob D. Babcock, Vinit Singh, Christine A. Frysz
  • Publication number: 20180233965
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Vinit Singh, Christine A. Frysz
  • Publication number: 20180233959
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Vinit Singh, Christine A. Frysz
  • Publication number: 20180233967
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Ajit Rajagopalan, Christine A. Frysz
  • Publication number: 20180233801
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Vinit Singh, Christine A. Frysz
  • Publication number: 20180233957
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: Alberto Peralta, Md. Nazmul Alam, Jacob D. Babcock, Vinit Singh, Christine A. Frysz
  • Patent number: 10046166
    Abstract: A hermetically sealed feedthrough filter assembly is attachable to an active implantable medical device and includes an insulator substrate assembly and a feedthrough filter capacitor disposed on a device side. A conductive leadwire has a proximal leadwire end extending to a distal leadwire end, wherein the proximal leadwire end is connectable to electronics internal to the AIMD. The distal leadwire end is disposed at least partially through a first passageway of the feedthrough filter capacitor and is in contact with, adjacent to or near a device side conductive fill. A first electrically conductive material makes a three-way electrically connection that electrically connects the device side conductive fill to an internal metallization of the feedthrough filter capacitor and to the distal leadwire end. A second electrically conductive material electrically connects an external metallization of the feedthrough filter capacitor to a ferrule or an AIMD housing.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 14, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Thomas Marzano, Keith W. Seitz, Christine A. Frysz
  • Publication number: 20180197661
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of: a) forming an alumina ceramic body in a green state, or, stacking upon one another discrete layers of alumina ceramic in a green state and pressing; b) forming at least one via hole straight through the alumina ceramic body; c) filling the at least one via hole with a ceramic reinforced metal composite paste; d) drying the alumina ceramic body and the ceramic reinforced metal composite paste; e) forming a second hole straight through the ceramic reinforced metal composite paste being smaller in diameter in comparison to the at least one via hole; f) filling the second hole with a substantially pure metal paste; g) sintering the alumina ceramic body, the ceramic reinforced metal composite paste and the metal paste; and h) hermetically sealing the feedthrough dielectric body to a ferrule.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Patent number: 10016596
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz
  • Patent number: 10016595
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20180178017
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 28, 2018
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20180178016
    Abstract: A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 28, 2018
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Patent number: 9993650
    Abstract: A filter feedthrough is described. The filter feedthrough includes a conductive ferrule supporting a dielectric substrate having a body fluid side and a device side. At least one via hole provided with a conductive fill is disposed through the dielectric substrate from the body fluid side to the device side. At least one MLCC-type capacitor is supported by the dielectric substrate. A first circuit trace couples from an active metallization connected to the active electrode plates of the capacitor to conductive fill in the via hole. A second circuit trace couples from the ground electrode plate of the capacitor to a metallization contacting an outer surface of the dielectric substrate. Then, a conductive material couples from the ground metallization to the ferrule to thereby electrically couple the capacitor to the ferrule.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 12, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano
  • Patent number: 9985480
    Abstract: An electrical system incorporating a single structure multiple mode antenna is described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals is connected to the electrical connections that facilitate numerous electrical connections and enables the antenna to be selectively tuned to various frequencies and frequency bands.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 29, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Vinit Singh, Alberto Peralta, Ajit Rajagopalan, Jason Luzinski, Jacob Babcock, Christine A. Frysz
  • Publication number: 20180126175
    Abstract: An insulative feedthrough attachable to an active implantable medical device includes a feedthrough body having a material which is both electrically insulative, biocompatible and separates a body fluid side from a device side. A passageway is disposed through the feedthrough body. A composite conductor is disposed within the passageway and has a body fluid side metallic wire electrically conductive to a device side metallic wire. The body fluid side metallic wire extends from a first end disposed inside the passageway to a second end on the body fluid side. The device side metallic wire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side metallic wire is hermetically sealed to the feedthrough body. The body fluid side metallic wire is biocompatible and is not the same material as the device side metallic wire.
    Type: Application
    Filed: May 24, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Publication number: 20180126176
    Abstract: A feedthrough subassembly is attachable to an active implantable medical device. A via hole is disposed through an electrically insulative and biocompatible feedthrough body extending from a body fluid side to a device side. A composite fill partially disposed within the via hole extends between a first and a second composite fill end. The first composite fill end is disposed at or near the device side of the feedthrough body. The second composite fill end is disposed within the via hole recessed from the body fluid side. The composite fill includes a first portion of a ceramic reinforced metal composite including alumina and platinum and a second portion of a substantially pure platinum fill and/or a platinum wire. A via hole metallization covers a portion of the second composite fill end. A metallic leadwire is at least partially disposed within the via hole and gold brazed via hole metallization.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Patent number: 9960629
    Abstract: A method of operating a single structure multiple mode antenna is described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals is connected to the electrical connections that facilitate numerous electrical connections and enables the antenna to be selectively tuned to various frequencies and frequency bands.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 1, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Ajit Rajagopalan, Alberto Peralta, Vinit Singh, Jason Luzinski, Jacob Babcock, Christine A. Frysz
  • Patent number: 9960628
    Abstract: Various embodiments of a single structure multiple mode antenna are described. The antenna is preferably of a single layer construction having a plurality of inductor coils positioned on respective opposing substrate sides that are electrically connected. The antenna is also constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals facilitates connection of the electrical connections thereby providing numerous electrical connection configurations and enables the antenna to be selectively tuned to various frequencies and frequency bands.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 1, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Vinit Singh, Ajit Rajagopalan, Jason Luzinski, Jacob Babcock, Christine A. Frysz