Patents by Inventor Christine Frysz

Christine Frysz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9948129
    Abstract: Various embodiments of a single structure multiple mode antenna are described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals facilitates connection of the electrical connections thereby providing numerous electrical connection configurations and enables the antenna to be selectively tuned to various frequencies and frequency bands. An internal switch circuit is provided that facilitates electrical connection of the various terminals and frequency tuning.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 17, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Vinit Singh, Alberto Peralta, Ajit Rajagopalan, Jason Luzinski, Jacob Babcock, Christine A. Frysz
  • Patent number: 9941729
    Abstract: Various embodiments of a single structure multiple mode antenna are described. The antenna is preferably constructed of a single layer having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals facilitates connection of the electrical connections thereby providing numerous electrical connection configurations and enables the antenna to be selectively tuned to various frequencies and frequency bands.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 10, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Vinit Singh, Ajit Rajagopalan, Jason Luzinski, Jacob Babcock, Christine A. Frysz
  • Patent number: 9941743
    Abstract: A single structure multiple mode antenna having a unitary body construction is described. The antenna is preferably constructed having a first inductor coil portion that is electrically connected in series with a second inductor coil portion. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals facilitates connection of the electrical connections having numerous electrical connection configurations and enables the antenna to be selectively tuned to various frequencies and frequency bands.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 10, 2018
    Assignee: NUCURRENT, INC.
    Inventors: Alberto Peralta, Vinit Singh, Ajit Rajagopalan, Jason Luzinski, Jacob Babcock, Christine A. Frysz
  • Patent number: 9941590
    Abstract: Various embodiments of a single structure multiple mode antenna are described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals facilitates connection of the electrical connections thereby providing numerous electrical connection configurations and enables the antenna to be selectively tuned to various frequencies and frequency bands. In addition, the antenna comprises a variety of magnetic shielding materials that are positioned through the antenna structure. These magnetic materials are designed to help shape the magnetic fields being emitted by the respective inductor coils.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 10, 2018
    Assignee: NuCurrent, Inc.
    Inventors: Jason Luzinski, Alberto Peralta, Vinit Singh, Ajit Rajagopalan, Jacob Babcock, Christine A. Frysz
  • Patent number: 9931514
    Abstract: A hermetically sealed filtered feedthrough assembly for an active implantable medical device includes an electrically conductive ferrule hermetically sealed by a first braze to an insulator. A conductor is hermetically sealed to and disposed through the insulator. A filter capacitor has an active electrode plate and a ground electrode plate which are disposed within and supported by a capacitor dielectric in an interleaved, partially overlapping relationship. A first passageway is disposed through the capacitor dielectric having a capacitor internal metallization which is connected to the active electrode plate. A capacitor external metallization electrically connects to the ground electrode plate. An oxide-resistant metal addition includes a conductive core with a conductive cladding of a different material. A first electrical connection is between the oxide-resistant metal addition and the capacitor external metallization.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 3, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Christine A. Frysz, Robert A. Stevenson, Jason Woods
  • Patent number: 9895534
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 20, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 9889306
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20180013135
    Abstract: A negative electrode of a lithium ion electrochemical cell, the negative electrode including an active electrode material that includes a first component and a second component. The first component may include graphene, silicon, or a combination thereof. The second component may include silicon. The active electrode material may include particles in which the second component is encapsulated by the first component. The negative electrode may have an internal porosity of between 40 to 60 percent.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 11, 2018
    Inventors: Joshua J. LAU, Cary M. HAYNER, Seonbaek HA, James MCKINNEY, Francis WANG, Christine A. FRYSZ
  • Patent number: 9827415
    Abstract: A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: November 28, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20170333703
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 23, 2017
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 9687662
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: June 27, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 9656064
    Abstract: A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: May 23, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20170141387
    Abstract: An electrochemically active material including composite particles that each include a graphene-based material shell surrounding nanoparticles of a core material. The composite particles may include a BET surface area of less than about 75 m2/g. The electrochemically active material may be formed into an electrode incorporated within a lithium ion electrochemical cell.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 18, 2017
    Inventors: Cary Michael HAYNER, Francis WANG, Christine A. FRYSZ
  • Publication number: 20170117866
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Robert A. Stevenson, Christine A. Frysz
  • Patent number: 9634315
    Abstract: An anode or negative electrode having a material matrix of carbon, graphene and an active element such as silicon or tin is described. The electrode is fabricated from an electrode slurry that does not utilize an organic binder. The electrode slurry comprises a combination of silicon and graphene oxide suspensions that is applied to a surface of a substrate such as a current collector. The layer of electrode slurry is heat treated to ensure adhesion of the layer of active electrode material to the surface of the current collector. The electrode may be incorporated within a lithium ion electrochemical cell.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: April 25, 2017
    Assignee: SINODE SYSTEMS, INC.
    Inventors: Cary Michael Hayner, Saad Hasan, Joshua Jonathan Lau, Christine A. Frysz, Peter Jefferies Santos
  • Publication number: 20170087355
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20170087356
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the Insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. There is also an active path electrically extending between the active end metallization of the chip capacitor and the lead wire.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20170087354
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Application
    Filed: December 8, 2016
    Publication date: March 30, 2017
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20170080239
    Abstract: A filter feedthrough is described. The filter feedthrough includes a conductive ferrule supporting a dielectric substrate having a body fluid side and a device side. At least one via hole provided with a conductive fill is disposed through the dielectric substrate from the body fluid side to the device side. At least one MLCC-type capacitor is supported by the dielectric substrate. A first circuit trace couples from an active metallization connected to the active electrode plates of the capacitor to conductive fill in the via hole. A second circuit trace couples from the ground electrode plate of the capacitor to a metallization contacting an outer surface of the dielectric substrate. Then, a conductive material couples from the ground metallization to the ferrule to thereby electrically couple the capacitor to the ferrule.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano
  • Patent number: RE46699
    Abstract: A hermetically sealed filtered feedthrough assembly for an AIMD includes an insulator hermetically sealed to a conductive ferrule or housing. A conductor is hermetically sealed and disposed through the insulator in non-conductive relation to the conductive ferrule or housing between a body fluid side and a device side. A feedthrough capacitor is disposed on the device side. A first low impedance electrical connection is between a first end metallization of the capacitor and the conductor. A second low impedance electrical connection is between a second end metallization of the capacitor and the ferrule or housing. The second low impedance electrical connection includes an oxide-resistant metal addition attached directly to the ferrule or housing and an electrical connection coupling the second end metallization electrically and physically directly to the oxide-resistant metal addition.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 6, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Richard L. Brendel, Robert A. Stevenson, Christopher Michael Williams, Robert Naugler, Christine A. Frysz