Patents by Inventor Christoph Herrmann

Christoph Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190211137
    Abstract: Polyamide foams which inhibit the spread of fires for filling cavities in mining Polyamide foams which do not propagate fire are obtained by mixing (i) a liquid isocyanate component which comprises at least one polyisocyanate and in which the molar ratio of aromatic isocyanate groups to the sum of aromatic and aliphatic isocyanate groups is at least 60 mol %, with (ii) at least one liquid isocyanate-reactive component which comprises a reactive diluent, and the reactive diluent comprises (a) a chain-extending and/or crosslinking reactive diluent selected from among aliphatic branched C24-66-polycarboxylic acids, alicyclic C24-66-polycarboxylic acids and partial esters of polycarboxylic acids having at least two unesterified carboxyl groups and/or (b) a chain-terminating reactive diluent selected from among aliphatic branched C24-66-monocarboxylic acids, alicyclic C24-66-monocarboxylic acids and partial esters of polycarboxylic acids having one unesterified carboxyl group, and (iii) optionally a solid isocyana
    Type: Application
    Filed: September 4, 2017
    Publication date: July 11, 2019
    Inventors: Burkhard WALTHER, Bernhard FEICHTENSCHLAGER, Christoph HERRMANN
  • Publication number: 20190170880
    Abstract: The present invention relates to the correction of a detector signal d by superposing the detector signal with a correction signal. For providing a valid correction signal, a sampling pulse Ps is periodically or randomly provided. This sampling pulse serves as the initiator for sampling a process signal p of a process unit (14), which is configured to process the corrected detector signal. During the sampling of the process signal, the process signal is observed. In case a pulse at the process signal is detected, the sampling is assumed as not being suitable to correct the detector signal, since the pulse affects the process signal. Otherwise, namely in case such a process signal pulse does not occur during the sampling period, the process signal is further observed during a validation period, which is subsequently arranged to the sampling period.
    Type: Application
    Filed: September 15, 2016
    Publication date: June 6, 2019
    Inventors: Roger STEADMAN BOOKER, Christoph HERRMANN, Amir LIVNE
  • Patent number: 10231678
    Abstract: A radiation detector (16) having a first detector layer (24) and a second detector layer (26) encircles an examination region (14). Detectors of the first layer include scintillators (72) and light detectors (74), such as avalanche photodiodes. The detectors of the second detector layer (26) include scintillators (62) and optical detectors (64). The scintillators (72) of the first layer have a smaller cross-section than the scintillators (62) of the second layers. A group, e.g., nine, of the first layer scintillators (72) overlay each second group scintillator (62). In a CT mode, detectors of the first layer detect transmission radiation to generate a CT image with a relatively high resolution and the detectors of the second layer detect PET or SPECT radiation to generate nuclear data for reconstruction into a lower resolution emission image. Because the detectors of the first and second layers are aligned, the transmission and emission images are inherently aligned.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 19, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Patent number: 10225696
    Abstract: Data transmission in a multicast fashion in which retransmissions are requested by recipients sending feedback to the one sender. Receiving stations are informed about the feedback of another receiving station. This is done by mirroring the feedback of receiving stations to other receiving stations. Due to this, in case, for example, one of the mirrored feedbacks is a negative acknowledgement message, the other receiving stations are informed that it is no longer necessary to provide their feedback, since a retransmission will be initiated anyway.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Patent number: 10177839
    Abstract: A wireless network with at least one base station and a plurality of associated terminals for the exchange of payload data and control data and at least one common transmission channel which is available for access to several terminals is described. The base station is configured to control access to the common transmission channel and the terminals are configured to send at least an access signal to the base station for the purpose of obtaining access to the common transmission channel. Different start moments and different preambles can be assigned to the terminals for transmitting their respective access signals.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 8, 2019
    Assignee: Koninklijke Philips N.V.
    Inventor: Christoph Herrmann
  • Publication number: 20180319519
    Abstract: The invention relates to a macroblister comprising a flat body, in which are introduced cavities for receiving individual medicament portions, wherein the cavities are filled with individual medicament portions and are sealed with a foil. According to the invention, said macroblister contains a number T of medicament portions, characterized in that T is at least 60 and the flat body has a dimension in the range of 200 mm×200 mm to 1200 mm×1200 mm.
    Type: Application
    Filed: August 18, 2016
    Publication date: November 8, 2018
    Applicant: BAYER PHARMA AKTIENGESELLSCHAFT
    Inventors: Olaf STANGE, Johannes-Walter HÖHL, Reiner DIEDERICH, Klaus DRÖDER, Christoph HERRMANN, Franz DIETRICH, Philipp BLUMENTHAL, Kai STÜHM, Paul BOBKA, Christopher SCHMIDT, Sebastian THIEDE
  • Patent number: 10078009
    Abstract: The invention relates to a method and a pulse processing circuit (100) for the processing of current pulses (CP) generated by incident photons (X) in a piece of converter material, for instance in a pixel (11) of a radiation detector. Deviations of the pulse shape from a reference are detected and used to identify pulse corruption due to pile-up effects at high count rates and/or charge sharing between neighboring pixels. The deviation detection may for instance be achieved by generating, with a pulse shaper (110), bipolar shaped pulses from the current pulse (CP) and/or two shaped pulses of different shapes which can be compared to each other.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: September 18, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Heiner Daerr, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker, Ewald Roessl
  • Patent number: 10054692
    Abstract: The present invention relates to a detector (22?) for detecting ionizing radiation, comprising: a directly converting semi-conductor layer (36) for producing charge carriers in response to incident ionizing radiation; and a plurality of electrodes (34) corresponding to pixels for registering the charge carriers and generate a signal corresponding to registered charge carriers; wherein an electrode of the plurality of electrodes (34) is structured to two-dimensionally intertwine with at least two adjacent electrodes to register the charge carriers by said electrode and by at least one adjacent electrode. The present invention further relates to a detection method and to an imaging apparatus.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 21, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ewald Roessl, Christoph Herrmann, Roger Steadman Booker, Klaus Jürgen Engel
  • Publication number: 20180196149
    Abstract: An imaging system (100) includes a detector module (114). The detector module includes a block (300) of a plurality of direct conversion photon counting detector pixels (122) and corresponding electronics (124, 604, 606, 132, 134 or 124, 128, 130, 134, 802) with hardware for both high energy resolution imaging mode and high X-ray flux imaging mode connected with the block of the plurality of direct conversion photon counting detector pixels. A method includes identifying a scanning mode for a selected imaging protocol, wherein the scanning modes includes one of a higher energy resolution mode and a higher X-ray flux mode, configuring a detector module, which is configurable for both the higher energy resolution mode and the higher X-ray flux mode, based on the identified scanning mode, performing the scan with the detector module configured for the mode of the selected imaging protocol, and processing scan data from the scan, generating volumetric image data.
    Type: Application
    Filed: July 4, 2016
    Publication date: July 12, 2018
    Inventors: Ira Micah BLEVIS, Roger STEADMAN BOOKER, Christoph HERRMANN
  • Publication number: 20180160989
    Abstract: The invention relates to an x-ray device (1) for imaging an object (41). A radiation detector (3) of the x-ray device includes detector elements (21) for detecting radiation, each detector element (21) comprising an adjustable sensitive volume, where an x-ray photon entering the sensitive volume produces an electric signal used for generating the image data. Further, the device comprises a control unit (9) configured to control the sensitive volume of at least one of the detector elements (21) in accordance with a geometric structure of the object (41) to be imaged in order to reduce a pile-up effect in the detector element. Moreover, the invention relates to a method for operating the device (1) and to a computer program for carrying out the method.
    Type: Application
    Filed: June 23, 2016
    Publication date: June 14, 2018
    Inventor: Christoph HERRMANN
  • Publication number: 20180014163
    Abstract: Data transmission in a multicast fashion in which retransmissions are requested by recipients sending feedback to the one sender. Receiving stations are informed about the feedback of another receiving station. This is done by mirroring the feedback of receiving stations to other receiving stations. Due to this, in case, for example, one of the mirrored feedbacks is a negative acknowledgement message, the other receiving stations are informed that it is no longer necessary to provide their feedback, since a retransmission will be initiated anyway.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 11, 2018
    Inventor: Christoph HERRMANN
  • Publication number: 20170357013
    Abstract: The present invention relates to a detector (22?) for detecting ionizing radiation, comprising: a directly converting semi-conductor layer (36) for producing charge carriers in response to incident ionizing radiation; and a plurality of electrodes (34) corresponding to pixels for registering the charge carriers and generate a signal corresponding to registered charge carriers; wherein an electrode of the plurality of electrodes (34) is structured to two-dimensionally intertwine with at least two adjacent electrodes to register the charge carriers by said electrode and by at least one adjacent electrode. The present invention further relates to a detection method and to an imaging apparatus.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 14, 2017
    Inventors: Ewald ROESSL, Christoph HERRMANN, Roger STEADMAN BOOKER, Klaus Jürgen ENGEL
  • Patent number: 9829377
    Abstract: The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2) and capable of adjusting ballistic deficit. The detection device (6) comprises a pre-amplifying unit (11) (such as, e.g., a charge-sensitive amplifier), a shaping unit (60) comprising a feedback discharge unit (13, I) (such as, e.g., a feedback resistor or a feedback current source), and a feedback discharge control unit (50) coupled to the feedback discharge unit (13, I). The feedback discharge control unit (50) is adapted to, e.g., adjust a resistance of a feedback resistor (and/or to adjust the current value of the feedback current source) if an electrical pulse generated by the shaping unit (60) does not exceed at least one energy comparison value (X1, X2, . . . , XN). The feedback discharge control unit (50) is adapted to not adjust the parameter of the feedback discharge unit (13, I) if the electrical pulse exceeds the at least one energy comparison value (X1, X2, . . . , XN).
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: November 28, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Christoph Herrmann
  • Patent number: 9775005
    Abstract: Data transmission in a multicast fashion in which retransmissions are requested by recipients sending feedback to the one sender. Receiving stations are informed about the feedback of another receiving station. This is done by mirroring the feedback of receiving stations to other receiving stations. Due to this, in case, for example, one of the mirrored feedbacks is a negative acknowledgement message, the other receiving stations are informed that it is no longer necessary to provide their feedback, since a retransmission will be initiated anyway. Advantageously, this may allow reduced interference in the direction of the feedback.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: September 26, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Patent number: 9759822
    Abstract: The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). The detection device (6) is configured to detect the photons during a first time period. The detection device (6) comprises a sensor (10) having an intermediate direct conversion material for converting photons into electrons and holes, a shaping element (20), and a compensation unit (450, INT, 950). The compensation unit (450, INT, 950) is adapted to provide a compensation signal based on the electrical pulse and on a photoconductive gain of said sensor (10). The core of the invention is to provide circuits to reduce artifacts due to inherent errors with direct conversion detectors in spectral computed tomography by determining a compensation current, by detecting or monitoring a baseline restorer feedback signal, or by ignoring signals above the baseline level.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: September 12, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Heiner Daerr, Christoph Herrmann, Frank Bergner, Roger Steadman Booker
  • Patent number: 9753157
    Abstract: The invention relates to a radiation detector (100?) and a method for detecting radiation, particularly for detecting X-rays (X) in a CT imaging apparatus (1000?). According to a preferred embodiment, the radiation detector (100?) comprises a conversion element (110) for converting incident radiation (X) into electrical signals which are read out and processed by a readout circuit (120). A heating device comprising the heat source (135?) of a Peltier element is provided with which the conversion element (110) can controllably be heated in order to reduce negative effects, e.g. of polarization, on image accuracy, wherein the heat sink (137?) of the Peltier element is oriented towards the readout circuit.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 5, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Christoph Herrmann, Frank Verbakel
  • Patent number: 9746566
    Abstract: The present invention relates to the correction of X-ray image information, e.g. the correction of X-ray image information regarding persistent currents in X-ray detector elements. X-ray detectors may be embodied as photoconductors with ohmic contacts, which output a photo current depending on the energy and amount of photons impinging on a respective photoconductor pixel. Such photoconductors may exhibit a photoconductive gain, i.e. the measured current when irradiated by X-ray is higher than the current, which would result from impinging photons only generating electron-hole pairs. To compensate for photoconductive gain a method (50) for image correction of X-ray image information is provided, comprising receiving (52) readout information of an X-ray detector element (14), wherein the readout information is dependent on impinging X-radiation (20) generating a photo current and compensating (54) the readout information for a photoconductive gain employing compensation information.
    Type: Grant
    Filed: September 29, 2013
    Date of Patent: August 29, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann
  • Publication number: 20170234996
    Abstract: A discriminator (118) includes a set of comparators (120, 2021, 2023, . . . , 202N), a window width generator (124, 214, 2141, . . . , 214N), and a set of reference signal generators (122, 2121, 2122, 2123, . . . , 212N). In response to the discriminator being in a window based spectrum measurement mode, a first reference signal generator for a first comparator generates a reference signal that is supplied to the first comparator and that is added with the window width with a result of the addition supplied to the second comparator. The first comparator compares a peak height of a pulse indicative of an energy of detected radiation with the supplied reference signal and produces a first output indicating which of the peak height or the reference signal is greater. The second comparator compares the peak height with the supplied result of the addition and produces a second output indicating which of the peak height or the result of the addition is greater.
    Type: Application
    Filed: August 24, 2015
    Publication date: August 17, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph HERRMANN
  • Publication number: 20170192110
    Abstract: The invention relates to a radiation detector (100?) and a method for detecting radiation, particularly for detecting X-rays (X) in a CT imaging apparatus (1000?). According to a preferred embodiment, the radiation detector (100?) comprises a conversion element (110) for converting incident radiation (X) into electrical signals which are read out and processed by a readout circuit (120). A heating device comprising the heat source (135?) of a Peltier element is provided with which the conversion element (110) can controllably be heated in order to reduce negative effects, e.g. of polarization, on image accuracy, wherein the heat sink (137?) of the Peltier element is oriented towards the readout circuit.
    Type: Application
    Filed: September 15, 2015
    Publication date: July 6, 2017
    Inventors: Roger STEADMAN BOOKER, Christoph HERRMANN, Frank VERBAKEL
  • Patent number: 9678220
    Abstract: The present invention relates to an x-ray detector comprising a sensor unit for detecting incident x-ray radiation comprising a number of sensor elements, a counting channel per sensor element for obtaining a count signal by counting photons or charge pulses generated in response to the incident x-ray radiation since a beginning of a measurement interval, an integrating channel per sensor element for obtaining an integration signal representing the total energy of radiation detected since the beginning of the measurement interval, and a processing unit for estimating, from the integration signals of the sensor elements, count signals of sensor elements whose counting channel has been saturated during the measurement interval.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: June 13, 2017
    Assignee: KONNINKLIJKE PHILIPS N.V.
    Inventor: Christoph Herrmann