Patents by Inventor Christoph Herrmann

Christoph Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8098771
    Abstract: When transmitting medium access control protocol data units for the high speed downlink shared channel over a plurality of hybrid automatic repeat request processes, one of the processes can be in a retransmission procedure. In this case, stalling of the transmission can occur, because the medium access control layer for the high speed downlink shared channel of the receiver apparatus (3) buffers the following packet data units, when a preceding protocol data unit is waiting in the stalled process. To enable an early processing of the already received data, the receiver apparatus determines, whether the next expected service data units for a higher layer such as a radio link control layer, are included in the already received packet data units by taking into account the sequence number for the higher layer. Therefore, the medium access control layer for the high speed downlink shared channel accesses the data of the service data unit for the higher layer.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 17, 2012
    Assignees: Koninklijke Philips Electronics, N.V., Sharp Corporation
    Inventor: Christoph Herrmann
  • Publication number: 20120001084
    Abstract: A detector array (110) of an imaging system (100) includes a radiation sensitive detector (114, 116) that detects radiation and generates a signal indicative thereof. A current-to-frequency (I/F) converter (202) converts the signal to a pulse train having a frequency indicative of the signal for an integration period. Circuitry (120) generates a first moment and at least one higher order moment based on the pulse train.
    Type: Application
    Filed: February 18, 2010
    Publication date: January 5, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roland Proksa, Christoph Herrmann, Walter Ruetten
  • Publication number: 20110315888
    Abstract: A detector tile (116) of an imaging detector array (112) includes a scintillator array (202), a photosensor array (204), which includes a plurality of photosensitive pixels, optically coupled to the scintillator array (202), and a current-to-frequency (I/F) converter (302). The I/F converter (302) includes an integrator (304) that integrates charge output by a photosensitive pixel during an integration period and generates a signal indicative thereof and a comparator (310) that generates a pulse when the generated signal satisfies predetermined criteria during the integration period. A reset device (316) resets the integrator (304) in response to the comparator (310) generating a pulse. Circuitry (320, 324) samples the generated signal at a beginning of the integration period and/or at an end of the integration period and generates quantized digital data indicative thereof. Logic (322) estimates the charge at the input of the integrator (304) based on the generated digital data.
    Type: Application
    Filed: February 9, 2010
    Publication date: December 29, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Michael Overdick
  • Publication number: 20110211668
    Abstract: The invention relates to converter element (100) for a radiation detector, particularly for a Spectral CT scanner. The converter element (100) comprises at least two conversion cells (131) that are at least partially separated from each other by intermediate separation walls (135) which affect the spreading of electrical signals generated by incident radiation (X). The conversion cells (131) may particularly consist of a crystal of CdTe and/or CdZnTe. Said crystal is preferably grown by e.g. vapor deposition between preformed separation walls.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roger Steadman Booker, Matthias Simon, Christoph Herrmann, Bernd Menser, Jens Wiegert, Klaus Juergen Engel, Christian Baeumer, Oliver Muelhens
  • Publication number: 20110211669
    Abstract: The invention relates to a radiation detector (100) comprising a converter element (113) with an array (120) of first electrodes (121) for sampling electrical signals generated by incident radiation (X). With a connection circuit (130), at least two first electrodes (121) can selectively be coupled to a common readout unit (141) according to a given connection pattern (CP1). The effective pixel size along the path of incident radiation (X) can thus be adapted to the distribution of electrical signals, which is usually determined by the spectral composition of the incident radiation.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker
  • Patent number: 7958542
    Abstract: For the transmission of an MBMS content to a plurality of user equipment units, the use of a p2m channel may only be beneficial if the number of joined user equipment units exceeds a threshold. However, counting is made difficult due to the fact that idle mode UE, also a non joined UE, may reply to the notification, and hence pretend a higher number of UEs which are ready and able to receive the MBMS content. According to the present invention, when joining the MBMS service, a number which is only known to the user equipment unit, as well as to those RNCs which will deliver the MBMS service for which the UE has joined, is provided to the UE. Whenever the UE replies to a service notification, it uses this number. The RNC determines a corresponding number and in case the number received from the UE matches the number determined by the RNC, the UE is counted. Advantageously, an integrity protection may be provided for the notification reply for joined UEs which are still in the idle mode.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: June 7, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Christoph Herrmann
  • Patent number: 7953033
    Abstract: First and second data is transmitted simultaneously by modulating a first set of signal constellation points, corresponding to the first data, with second data thereby creating a second set of constellation points. The second set of constellation points comprises two subsets corresponding to two values of the first data. The constellation points are selected such that the minimum distance between the first and second subsets is not less than the minimum distance between the constellation points of the first set of constellation points.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: May 31, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Matthew P. J. Baker, Timothy J. Moulsley, Olivier J-M. Hus, Paul Bucknell, Christoph Herrmann
  • Publication number: 20110079865
    Abstract: The invention relates to a radiation detector (10), comprising an array of pixels (1), wherein each pixel (1) comprises a conversion layer of a semiconductor material (4) for converting incident radiation into electrical signals and wherein each pixel (1) is surrounded by a trench (3) that is at least partly filled with a barrier material that absorbs at least a part of photons generated by the incident radiation. The invention also relates to a method of manufacturing such a radiation detector (10).
    Type: Application
    Filed: June 9, 2009
    Publication date: April 7, 2011
    Applicant: KONNKLIJE PHILIPS ELECTRONICS N.V.
    Inventors: Gereon Vogtmeier, Christoph Herrmann, Klaus Juergen Engel
  • Publication number: 20110036989
    Abstract: A pulse shaper (124) includes an integrator (202) with a feedback capacitor (208) that stores integrated charge of a charge pulse indicative of a detected photon. An output pulse of the integrator includes a peak amplitude indicative of the detected photon. An end pulse identifier (214) identifies the end of the charge pulse. A controller (216) generates a control signal that invokes a reset of the integrator (202) when the end of the 5 pulse is identified. An energy discriminator (128) includes a chain of comparators (132) connected in series. An output of each of the comparators (702, 704) is influenced by an output of a previous one of the comparators 712 (702, 704). A decision component (706) determines an output of the comparators (702, 704), and a controller component (708) triggers the decision component (706) to store the output of the comparators (702, 704) 10 after lapse of a charge collection time.
    Type: Application
    Filed: March 20, 2009
    Publication date: February 17, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Aviv Marks, Christoph Herrmann, Ewald Roessl
  • Publication number: 20110017918
    Abstract: The invention relates to a radiation detector (100) that is particularly suited for energy resolved single X-ray photon detection in a CT scanner. In a preferred embodiment, the detector (100) comprises an array of scintillator elements (S k) in which incident X-ray photons (X) are converted into bursts of optical photons (hn). Pixels (P k) associated to the scintillator elements (S k) determine the numbers of optical photons they receive within predetermined acquisition intervals. These numbers can then be digitally processed to detect single X-ray photons (X) and to determine their energy. The pixels may particularly be realized by avalanche photodiodes with associated digital electronic circuits for data processing.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 27, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Thomas Frach, Christoph Herrmann, Gordian Prescher, Torsten Solf, Roger Steadman Booker, Guenter Zeitler
  • Publication number: 20100322380
    Abstract: The invention relates to an X-ray detector (30) that comprises an array of sensitive elements (Pi?1,b, Pia, Pib, Pi+1,a, Pi+1,b) and at least two analyzer gratings (G2a, G2b) disposed with different phase and/or periodicity in front of two different sensitive elements. Preferably, the sensitive elements are organized in macro-pixels (IIi) of e.g. four adjacent sensitive elements, where analyzer gratings with mutually different phases are disposed in front said sensitive elements. The detector (30) can particularly be applied in an X-ray device (100) for generating phase contrast images because it allows to sample an intensity pattern (I) generated by such a device simultaneously at different positions.
    Type: Application
    Filed: February 9, 2009
    Publication date: December 23, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Klaus Juergen Engel, Christoph Herrmann
  • Publication number: 20100252744
    Abstract: The invention relates to a radiation detector that comprises a converter element and a plurality of electrode systems arranged on said element, wherein each electrode system comprises a primary electrode and a supplementary electrode, which are connected to a readout circuitry. The primary and the supplementary electrodes may particularly be realized by planar, parallel stripes extending in a common plane, wherein said stripes are electrically connected above said plane.
    Type: Application
    Filed: March 24, 2010
    Publication date: October 7, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph HERRMANN, Klaus Juergen ENGEL, Christian BAEUMER
  • Patent number: 7810007
    Abstract: Using the attribute “priority” to achieve a stronger Forward Error Correction (FEC) for Radio Link Control (RLC) Control Protocol Data Units (PDUs) transmitted via the High Speed Downlinik Shared Channel (HS-DSCH) also entails prioritized handling so that an RLC Control PDU is likely to overhaul an RLC Data PDU. As a consequence the RLC protocol operation can severely be disturbed, since it relies on in-sequence delivery of control and data PDUs. According to an exemplary embodiment of the present invention, two types of containers are provided in which data packets may be transmitted, wherein the first type of container is provided with a stronger error coding than the second type of container and wherein data packets which comprise control instructions are only transmitted in the first container type with the stronger error correction. Due to this, an improved forward error correction for control PDUs of the AM RLC protocol of Universal Mobile Telecommunications System (UMTS) may be provided.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: October 5, 2010
    Assignees: Koninklijke Philips Electronics N.V., Sharp Corporation
    Inventor: Christoph Herrmann
  • Publication number: 20100216727
    Abstract: An antimalarial conjugate according to a non-limiting embodiment of the present invention may include a metallocene, a carbohydrate, and an antimalarial agent. The metallocene may include two cyclopentadienyl rings bound to a central metal atom. The carbohydrate and the antimalarial agent may be appended to at least one of the cyclopentadienyl rings of the metallocene, wherein the antimalarial agent has therapeutic properties directed to treating and/or preventing malaria. The metallocene may be ferrocene, the carbohydrate may be glucose, and the antimalarial agent may be chloroquine.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 26, 2010
    Inventors: Michael J. Adam, Chris Orvig, Paloma Salas, Christoph Herrmann
  • Publication number: 20100213381
    Abstract: The invention relates to a radiation detector (100), particularly for X-rays (X) and for y-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 26, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker, Guenter Zeitler
  • Patent number: 7782999
    Abstract: Systems and methods for data acquisition in computed tomography (CT) applications are provided. The systems and methods are particularly adapted for scanning and acquiring/processing data in connection with high-power cone-beam CT applications. The electron beam is moved/scanned along the anode surface to multiple focal positions. Data acquisition for a full projection at one focus position and one view angle is achieved by activating each focus position multiple times during the data acquisition for one angle of the gantry. The detector array and associated data processing system are adapted to rapidly switch between the different focus positions during the acquisitions for one view angle and to collect all data belonging to the same projection into the same data set. Adaptive electron optics are utilized to move/scan the electron beam along the anode surface to the various focus positions.
    Type: Grant
    Filed: September 16, 2006
    Date of Patent: August 24, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Astrid Lewalter, Rainer Pietig, Guenter Zeitler, Kai Eck, Christoph Herrmann, Rainer Kiewitt, Christoph Loef, Oliver Muelhens, Carolina Ribbing, Georg Rose, Matthias Simon, Olaf Wischhusen
  • Publication number: 20100200760
    Abstract: The invention relates to a radiation detector and a method for producing such a detector, wherein the detector comprises a stack of the scintillator elements and photodiode arrays. The PDAs extend with electrical leads into a rigid body filling a border volume lateral of the scintillator elements, wherein said leads end in a contact surface of the border volume. Moreover, a redistribution layer is disposed on the contact surface, wherein electrical lines of the redistribution layer contact the leads of the PDAs.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 12, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian BAEUMER, Oliver MUELHENS, Roger STEADMAN BOOKER, Christoph HERRMANN
  • Publication number: 20100193700
    Abstract: An apparatus includes a scale factor determiner (236) that determines a count scale factor based on a measured count of a number detected photons for an energy threshold and an estimated actual count of the number of detected photons. The photons include poly-energetic photons detected by a radiation sensitive detector. The apparatus further includes a count sealer (136) that employs the count scale factor to scale measured counts of detected photons for different energy thresholds.
    Type: Application
    Filed: May 22, 2008
    Publication date: August 5, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Christian Baeumer, Guenter Zeitler
  • Publication number: 20100187432
    Abstract: An apparatus includes an integrator (120) that produces a pulse having a peak amplitude indicative of the energy of a detected photon. First discharging circuitry (136) discharges the integrator (120) at a first discharging speed, and second discharging circuitry (124) discharges the integrator (120) at a second discharging speed. The first discharging speed is less than the second discharging speed.
    Type: Application
    Filed: May 23, 2008
    Publication date: July 29, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Christian Baeumer, Guenter Zeitler
  • Publication number: 20100187429
    Abstract: The invention relates to a radiation detector (200), particularly an X-ray detector, which comprises at least one sensitive layer (212) for the conversion of incident photons (X) into electrical signals. A two-dimensional array of electrodes (213) is located on the front side of the sensitive layer (212), while its back side carries a counter-electrode (211). The size of the electrodes (213) may vary in radiation direction (y) for adapting the counting workload of the electrodes. Moreover, the position of the electrodes (213) with respect to the radiation direction (y) provides information about the energy of the detected photons (X).
    Type: Application
    Filed: November 12, 2007
    Publication date: July 29, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Klaus J. Engel, Guenter Zeitler, Christian Baeumer, Christoph Herrmann, Jens Wiegert, Roland Proksa, Ewald Roessl, Roger Steadman Booker