Patents by Inventor Christopher A. Bower

Christopher A. Bower has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10200013
    Abstract: A compound acoustic wave filter device comprises a support substrate having an including two or more circuit connection pads. An acoustic wave filter includes a piezoelectric filter element and two or more electrodes. The acoustic wave filter is micro-transfer printed onto the support substrate. An electrical conductor electrically connects one or more of the circuit connection pads to one or more of the electrodes.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 5, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10198890
    Abstract: A hybrid high-security document includes a document and one or more independent light-emitting modules disposed on or embedded in the document. Each module comprises an antenna with multiple turns, an electronic circuit, and a light emitter mounted and electrically connected on a substrate separate from the document. The electronic circuit is responsive to electrical power provided from the antenna to control the light emitter to emit light. The electronic circuit can include a memory storing information relevant to the hybrid high-security document or its use. The information can be accessed by external readers providing electromagnetic energy to the hybrid high-security document. The hybrid high-security document can be a hybrid banknote.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: February 5, 2019
    Assignee: X-Celeprint Limited
    Inventors: Robert R. Rotzoll, Christopher Bower, Ronald S. Cok
  • Publication number: 20190035970
    Abstract: The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro-transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 31, 2019
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Carl Prevatte, Salvatore Bonafede
  • Patent number: 10193025
    Abstract: An inorganic light-emitting diode (iLED) pixel structure includes a transparent pixel substrate having an LED surface, an emission surface opposite the LED surface, and one or more sides other than the LED surface and the emission surface that are not parallel to the LED surface or the emission surface. One or more iLEDs are mounted on the pixel substrate and each iLED has an emission side adjacent to the LED surface of the pixel substrate to emit light into the pixel substrate and out of the emission surface. A reflector is disposed on at least a portion of the one or more sides.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 29, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Ronald S. Cok
  • Patent number: 10181507
    Abstract: A display tile structure includes a tile layer with opposing emitter and backplane sides. A light emitter having first and second electrodes for conducting electrical current to cause the light emitter to emit light is disposed in the tile layer. First and second electrically conductive tile micro-wires and first and second conductive tile contact pads are electrically connected to the first and second tile micro-wires, respectively. The light emitter includes a plurality of semiconductor layers and the first and second electrodes are disposed on a common side of the semiconductor layers opposite the emitter side of the tile layer. The first and second tile micro-wires and first and second tile contact pads are disposed on the backplane side of the tile layer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: January 15, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10163945
    Abstract: Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. The semiconductor active layer and the sacrificial layer may be selectively etched in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. The capping layer and the first portion of the semiconductor active layer may be selectively etched to thereby expose the sacrificial layer.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 25, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Etienne Menard, Matthew Meitl, Joseph Carr
  • Patent number: 10164404
    Abstract: According to an embodiment, a crystalline color-conversion device includes an electrically driven first light emitter, for example a blue or ultraviolet LED, for emitting light having a first energy in response to an electrical signal. An inorganic solid single-crystal direct-bandgap second light emitter having a bandgap of a second energy less than the first energy is provided in association with the first light emitter. The second light emitter is electrically isolated from, located in optical association with, and physically connected to the first light emitter so that in response to the electrical signal the first light emitter emits first light that is absorbed by the second light emitter and the second light emitter emits second light having a lower energy than the first energy.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: December 25, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10150326
    Abstract: A hybrid document includes a document having visible markings, one or more light-controlling elements embedded in or on the document, and a controller including a circuit having a non-volatile memory. The controller is embedded in or on the document and electrically connected to the one or more light-controlling elements for controlling the one or more light-controlling elements. A power input connection is electrically connected to any one or all of the controller, the circuit, the memory, or the one or more light-emitting elements. The memory stores a state and the circuit causes the one or more light-controlling elements to indicate the state. A hybrid document validation machine is adapted to accept one or more of the hybrid documents, change the state of the hybrid documents, and optionally display the state on a display.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 11, 2018
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Mark Willner
  • Patent number: 10150325
    Abstract: A hybrid currency banknote includes a banknote having visible markings. One or more light-controlling elements and a controller are embedded in or on the banknote. The controller is electrically connected to the one or more light-controlling elements to control the one or more light-controlling elements. A power input connection is electrically connected to the controller, or one or more light-controlling elements, or both. A power source can be connected to the power input connection, for example a piezoelectric or photovoltaic power source. In response to applied power, the controller causes the one or more light-controlling elements to emit light. A value can be stored in a memory in the controller and displayed by the light-controlling elements. The value can be assigned or varied by a hybrid currency teller machine.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: December 11, 2018
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Mark Willner
  • Patent number: 10153256
    Abstract: A micro-transfer printable electronic component includes one or more electronic components, such as integrated circuits or LEDs. Each electronic component has device electrical contacts for providing electrical power to the electronic component and a post side. A plurality of electrical conductors includes at least one electrical conductor electrically connected to each of the device electrical contacts. One or more electrically conductive connection posts protrude beyond the post side. Each connection post is electrically connected to at least one of the electrical conductors. Additional connection posts can form electrical jumpers that electrically connect electrical conductors on a destination substrate to which the printable electronic component is micro-transfer printed. The printable electronic component can be a full-color pixel in a display.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: December 11, 2018
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl, Carl Prevatte, Jr.
  • Publication number: 20180342190
    Abstract: A parallel redundant integrated-circuit system includes an input connection, an output connection and first and second active circuits. The first active circuit includes one or more first integrated circuits and has an input connected to the input connection and an output connected to the output connection. The second active circuit includes one or more second integrated circuits and is redundant to the first active circuit, has an input connected to the input connection, and has an output connected to the output connection. The second integrated circuits are separate and distinct from the first integrated circuits.
    Type: Application
    Filed: August 3, 2018
    Publication date: November 29, 2018
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Matthew Meitl
  • Patent number: 10120670
    Abstract: At least one application may include instructions comprising application instructions and a plurality of separate pipeline definition instructions. The application instructions may be within a virtual container including at least one program that is generically executable in a plurality of different continuous integration and delivery (CI/CD) environments. Each of the plurality of separate pipeline definition instructions may be configured for each of the plurality of different CI/CD environments such that each pipeline definition may operate only in the CI/CD environment for which it is created. Each pipeline definition may be configured to cause the CI/CD environment for which it is created to execute the at least one program.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: November 6, 2018
    Assignee: Capital One Services, LLC
    Inventors: Brandon Atkinson, Christopher Bowers, Dallas Edwards
  • Patent number: 10109764
    Abstract: The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro-transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 23, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Carl Prevatte, Salvatore Bonafede
  • Patent number: 10109753
    Abstract: Embodiments of the present invention provide a compound optical filter device comprising a semiconductor substrate having an optical transducer formed on the semiconductor substrate, the optical transducer responsive to light to produce a signal or responsive to a signal to emit light. An optical filter comprises a filter substrate separate and independent from the semiconductor substrate and one or more optical filter layers disposed on the filter substrate. The filter substrate is micro-transfer printed on or over the semiconductor substrate or on layers formed over the semiconductor substrate and over the optical transducer to optically filter the light to which the optical transducer is responsive or to optically filter the light emitted by the optical transducer. In further embodiments, the optical filter is an interference filter and the semiconductor substrate includes active components that can control or operate the optical transducer.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 23, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Ronald S. Cok
  • Patent number: 10102794
    Abstract: A distributed charge-pump power-supply system includes a system substrate with a plurality of separate electronic elements spatially distributed over the system substrate. Each electronic element includes first and second sub-elements requiring first and second different operating voltage connections. A plurality of separate charge-pump circuits are also spatially distributed over the system substrate. Each charge-pump circuit has a common charge-pump power supply connection and provides the first and second voltage connection supplying operating electrical power to the first and second sub-elements. The electronic elements are arranged in groups of one or more electronic elements and the first and second voltage connections for each group are provided by a charge-pump circuit.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: October 16, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Robert R. Rotzoll
  • Publication number: 20180277504
    Abstract: An active substrate includes a plurality of active components distributed over a surface of a destination substrate, each active component including a component substrate different from the destination substrate, and each active component having a circuit and connection posts on a process side of the component substrate. The connection posts may have a height that is greater than a base width thereof, and may be in electrical contact with the circuit and destination substrate contacts.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventor: Christopher Bower
  • Publication number: 20180254376
    Abstract: The disclosed technology relates generally to a method and system for micro assembling GaN materials and devices to form displays and lighting components that use arrays of small LEDs and high-power, high-voltage, and or high frequency transistors and diodes. GaN materials and devices can be formed from epitaxy on sapphire, silicon carbide, gallium nitride, aluminum nitride, or silicon substrates. The disclosed technology provides systems and methods for preparing GaN materials and devices at least partially formed on several of those native substrates for micro assembly.
    Type: Application
    Filed: May 1, 2018
    Publication date: September 6, 2018
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10050351
    Abstract: Phased-array antenna systems can be constructed using transfer printed active components. Phased-array antenna systems benefit from a large number of radiating elements (e.g., more radiating elements can form sharper, narrower beams (higher gain)). As the number of radiating elements increases, the size of the part and the cost of assembly increases. High throughput micro assembly (e.g. by micro-transfer printing) mitigates costs associated with high part-count. Micro assembly is advantaged over monolithic approaches that form multiple radiating elements on a semiconductor wafer because micro assembly uses less semiconductor material to provide the active components that are necessary for the array. The density of active components on the phased-array antenna system is small. Micro assembly provides a way to efficiently use semiconductor material on a phased array, reducing the amount of non-active semiconductor area (e.g.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: August 14, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Publication number: 20180226287
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10037985
    Abstract: Embodiments of the present invention provide a compound power transistor device including a first semiconductor substrate including a first semiconductor material, a second semiconductor substrate including a second semiconductor material different from the first semiconductor material, and a power transistor formed in or on the second semiconductor substrate. In certain embodiments, the second semiconductor substrate is micro-transfer printed on and secured to the first semiconductor substrate.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: July 31, 2018
    Assignee: X-Celeprint Limited
    Inventors: Rudi De Winter, Christopher Bower, Ronald S. Cok, Matthew Meitl