Patents by Inventor Christopher J. Jezewski

Christopher J. Jezewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200321246
    Abstract: Integrated circuit (IC) interconnect lines having line breaks and line bridges within one interconnect level that are based on a single lithographic mask pattern. Multi-patterning may be employed to define a grating structure of a desired pitch in a first mask layer. Breaks and bridges between the grating structures may be derived from a second mask layer through a process-based selective occlusion of openings defined in the second mask layer that are below a threshold minimum lateral width. Portions of the grating structure underlying openings defined in the second mask layer that exceed the threshold minimum lateral width are removed. Trenches in an underlayer may then be etched based on a union of the remainder of the grating structure and the occluded openings in the second mask layer. The trenches may then be backfilled to form the interconnect lines.
    Type: Application
    Filed: December 27, 2017
    Publication date: October 8, 2020
    Applicant: Intel Corporation
    Inventors: Kevin Lin, Christopher J. Jezewski
  • Publication number: 20200303257
    Abstract: In an embodiment of the present disclosure, a device structure includes a fin structure, a gate on the fin structure, and a source and a drain on the fin structure, where the gate is between the source and the drain. The device structure further includes an insulator layer having a first insulator layer portion adjacent to a sidewall of the source, a second insulator layer portion adjacent to a sidewall of the drain, and a third insulator layer portion therebetween adjacent to a sidewall of the gate, and two or more stressor materials adjacent to the insulator layer. The stressor materials can be tensile or compressively stressed and may strain a channel under the gate.
    Type: Application
    Filed: January 12, 2018
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Christopher J. Jezewski, Willy Rachmady, Rishabh Mehandru, Gilbert Dewey, Anh Phan
  • Publication number: 20200286836
    Abstract: An embodiment includes a metal interconnect structure, comprising: a dielectric layer disposed on a substrate; an opening in the dielectric layer, wherein the opening has sidewalls and exposes a conductive region of at least one of the substrate and an interconnect line; an adhesive layer, comprising manganese, disposed over the conductive region and on the sidewalls; and a fill material, comprising cobalt, within the opening and on a surface of the adhesion layer. Other embodiments are described herein.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Christopher J. JEZEWSKI, Tejaswi K. INDUKURI, Ramanan V. CHEBIAM, Colin T. CARVER
  • Publication number: 20200279806
    Abstract: Integrated circuit (IC) interconnect lines having improved electromigration resistance. Multi-patterning may be employed to define a first mask pattern. The first mask pattern may be backfilled and further patterned based on a second mask layer through a process-based selective occlusion of openings defined in the second mask layer that are below a threshold minimum lateral width. Portions of material underlying openings defined in the second mask layer that exceed the threshold are removed. First trenches in an underlying dielectric material layer may be etched based on a union of the remainder of the first mask layer and the partially occluded second mask layer. The first trenches may then be backfilled with a first conductive material to form first line segments. Additional trenches in the underlayer may then be etched and backfilled with a second conductive material to form second line segments that are coupled together by the first line segments.
    Type: Application
    Filed: December 27, 2017
    Publication date: September 3, 2020
    Applicant: Intel Corporation
    Inventors: Kevin Lin, Christopher J. Jezewski, Manish Chandhok
  • Patent number: 10700007
    Abstract: An embodiment includes a metal interconnect structure, comprising: a dielectric layer disposed on a substrate; an opening in the dielectric layer, wherein the opening has sidewalls and exposes a conductive region of at least one of the substrate and an interconnect line; an adhesive layer, comprising manganese, disposed over the conductive region and on the sidewalls; and a fill material, comprising cobalt, within the opening and on a surface of the adhesion layer. Other embodiments are described herein.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 30, 2020
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, Tejaswi K. Indukuri, Ramanan V. Chebiam, Colin T. Carver
  • Publication number: 20200203605
    Abstract: An RRAM device is disclosed. The RRAM device includes a bottom electrode, a high-k material on the bottom electrode, a top electrode, a top contact on the top electrode and an encapsulating layer of Al2O3. The encapsulating layer encapsulates the bottom electrode, the high-k material, the top electrode and the top contact.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Albert CHEN, Nathan STRUTT, Oleg GOLONZKA, Pedro QUINTERO, Christopher J. JEZEWSKI, Elijah V. KARPOV
  • Patent number: 10629525
    Abstract: Embodiments of the present disclosure describe removing seams and voids in metal interconnects and associated techniques and configurations. In one embodiment, a method includes conformally depositing a metal into a recess disposed in a dielectric material to form an interconnect, wherein conformally depositing the metal creates a seam or void in the deposited metal within or directly adjacent to the recess and heating the metal in the presence of a reactive gas to remove the seam or void, wherein the metal has a melting point that is greater than a melting point of copper. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: Ramanan V. Chebiam, Christopher J. Jezewski, Tejaswi K. Indukuri, James S. Clarke, John J. Plombon
  • Publication number: 20200098657
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, a conductive contact stack above the substrate and in contact with the channel layer, and a gate electrode separated from the channel layer by a gate dielectric layer. The conductive contact stack may be a drain electrode or a source electrode. In detail, the conductive contact stack includes at least a metal layer, and at least a metal sealant layer to reduce hydrogen diffused into the channel layer through the conductive contact stack. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Arnab SEN GUPTA, Matthew METZ, Benjamin CHU-KUNG, Abhishek SHARMA, Van H. LE, Miriam R. RESHOTKO, Christopher J. JEZEWSKI, Ryan ARCH, Ande KITAMURA, Jack T. KAVALIEROS, Seung Hoon SUNG, Lawrence WONG, Tahir GHANI
  • Patent number: 10529660
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Jessica M. Torres, Jeffery D. Bielefeld, Mauro J. Kobrinsky, Christopher J. Jezewski, Gopinath Bhimarasetti
  • Publication number: 20190371657
    Abstract: In one embodiment, a trench may be formed in a dielectric surface, and the trenched may be lined with a liner. The trench may be filled with a metal, and the metal may be recessed below an opening of the trench. The liner may be converted into a dielectric, and a hard mask may be deposited into the trench.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 5, 2019
    Applicant: Intel Corporation
    Inventors: Manish Chandhok, Satyarth Suri, Tristan A. Tronic, Christopher J. Jezewski, Richard E. Schenker
  • Publication number: 20190326214
    Abstract: Methods/structures of forming thin film resistors using interconnect liner materials are described. Those methods/structures may include forming a first liner in a first trench, wherein the first trench is disposed in a dielectric layer that is disposed on a substrate. Forming a second liner in a second trench, wherein the second trench is adjacent the first trench, forming an interconnect material on the first liner in the first trench, adjusting a resistance value of the second liner, forming a first contact structure on a top surface of the interconnect material, and forming a second contact structure on the second liner.
    Type: Application
    Filed: December 29, 2016
    Publication date: October 24, 2019
    Applicant: Intel Corporation
    Inventors: Kevin Lin, Christopher J. Jezewski, Richard F. Vreeland, Tristan A. Tronic
  • Publication number: 20190259844
    Abstract: Disclosed herein are transistor electrode-channel arrangements, and related methods and devices. For example, in some embodiments, a transistor electrode-channel arrangement may include a channel material, source/drain electrodes provided over the channel material, and a sealant at least partially enclosing one or more of the source/drain electrodes, wherein the sealant includes one or more metallic conductive materials.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Jack T. Kavalieros, Gilbert Dewey, Van H. Le, Lawrence D. Wong, Christopher J. Jezewski
  • Publication number: 20190252313
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Application
    Filed: September 30, 2016
    Publication date: August 15, 2019
    Inventors: Jessica M. TORRES, Jeffery D. BIELEFELD, Mauro J. KOBRINSKY, Christopher J. JEZEWSKI, Gopinath BHIMARASETTI
  • Publication number: 20190088593
    Abstract: Embodiments of the present disclosure describe removing seams and voids in metal interconnects and associated techniques and configurations. In one embodiment, a method includes conformally depositing a metal into a recess disposed in a dielectric material to form an interconnect, wherein conformally depositing the metal creates a seam or void in the deposited metal within or directly adjacent to the recess and heating the metal in the presence of a reactive gas to remove the seam or void, wherein the metal has a melting point that is greater than a melting point of copper. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 26, 2018
    Publication date: March 21, 2019
    Inventors: Ramanan V. CHEBIAM, Christopher J. JEZEWSKI, Tejaswi K. INDUKURI, James S. CLARKE, John J. PLOMBON
  • Publication number: 20190074217
    Abstract: A conductive connector for a microelectronic structure may be formed in an opening in a dielectric layer, wherein a ruthenium/aluminum-containing liner is disposed between the dielectric layer and a substantially aluminum-free copper fill material within the opening. The ruthenium/aluminum-containing liner may be formed by depositing a ruthenium-containing liner and migrating aluminum into the ruthenium-containing liner with an annealing process. The aluminum may be presented as a layer formed either before or after the deposition of a copper fill material, or may be presented within a copper/aluminum alloy fill material wherein the annealing process migrates the aluminum out of the copper/aluminum alloy and into the ruthenium-containing liner.
    Type: Application
    Filed: February 25, 2016
    Publication date: March 7, 2019
    Applicant: Intel Corporation
    Inventors: Christopher J. Jezewski, Ramanan V. Chebiam, Jasmeet S. Chawla, Mauro J. Kobrinsky, James S. Clarke
  • Publication number: 20190003563
    Abstract: A self-locking nut and screw assembly may include a screw and a first nut rotatable and linearly translatable with respect to each other. The assembly may also include a first motor configured to provide torque to one of the screw and the first nut. The assembly may further include a locking mechanism configured to lock the screw to prevent backdrive when the motor is not providing torque to the one of the screw and the first nut.
    Type: Application
    Filed: June 8, 2018
    Publication date: January 3, 2019
    Inventors: Thomas J. Fields, Sorin Gavriliuc, Christopher J. Jezewski, Tyler Q. Curtis
  • Patent number: 10068845
    Abstract: Embodiments of the present disclosure describe removing seams and voids in metal interconnects and associated techniques and configurations. In one embodiment, a method includes conformally depositing a metal into a recess disposed in a dielectric material to form an interconnect, wherein conformally depositing the metal creates a seam or void in the deposited metal within or directly adjacent to the recess and heating the metal in the presence of a reactive gas to remove the seam or void, wherein the metal has a melting point that is greater than a melting point of copper. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: September 4, 2018
    Assignee: Intel Corporation
    Inventors: Ramanan V. Chebiam, Christopher J. Jezewski, Tejaswi K. Indukuri, James S. Clarke, John J. Plombon
  • Publication number: 20180211918
    Abstract: An embodiment includes a metal interconnect structure, comprising: a dielectric layer disposed on a substrate; an opening in the dielectric layer, wherein the opening has sidewalls and exposes a conductive region of at least one of the substrate and an interconnect line; an adhesive layer, comprising manganese, disposed over the conductive region and on the sidewalls; and a fill material, comprising cobalt, within the opening and on a surface of the adhesion layer. Other embodiments are described herein.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Christopher J. JEZEWSKI, Tejaswi K. INDUKURI, Ramanan V. CHEBIAM, Colin T. CARVER
  • Publication number: 20180182702
    Abstract: Embodiments of the invention describe low capacitance interconnect structures for semiconductor devices and methods for manufacturing such devices. According to an embodiment of the invention, a low capacitance interconnect structure comprises an interlayer dielectric (ILD). First and second interconnect lines are disposed in the ILD in an alternating pattern. The top surfaces of the first interconnect lines may be recessed below the top surfaces of the second interconnect lines. Increases in the recess of the first interconnect lines decreases the line-to-line capacitance between neighboring interconnects. Further embodiments include utilizing different dielectric materials as etching caps above the first and second interconnect lines. The different materials may have a high selectivity over each other during an etching process. Accordingly, the alignment budget for contacts to individual interconnect lines is increased.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Christopher J. JEZEWSKI, Jasmeet S. CHAWLA
  • Patent number: 10008557
    Abstract: Vertical meander inductors for small core voltage regulators and approaches to fabricating vertical meander inductors for small core voltage regulators are described. For example, a semiconductor die includes a substrate. An integrated circuit is disposed on an active surface of the substrate. An inductor is coupled to the integrated circuit. The inductor is disposed conformal with an insulating layer disposed on an essentially planar surface of the substrate. The insulating layer has an undulating topography.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 26, 2018
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, Kevin P. O'Brien