Patents by Inventor Christopher T. Bernard

Christopher T. Bernard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11258517
    Abstract: Techniques are described for configuring an optical network unit (ONU) in a pre-burst state prior to transitioning the ONU to a burst-on state. During the pre-burst state, a laser emitter of the ONU stabilizes to its wavelength, thereby reducing the impact of wavelength drift when the ONU transitions to the burst-on state.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 22, 2022
    Assignee: Calix, Inc.
    Inventors: Harold A. Roberts, Nicholas A. Proite, Christopher T. Bernard, Peter O. Lee
  • Publication number: 20210083777
    Abstract: Techniques are described for configuring an optical network unit (ONU) in a pre-burst state prior to transitioning the ONU to a burst-on state. During the pre-burst state, a laser emitter of the ONU stabilizes to its wavelength, thereby reducing the impact of wavelength drift when the ONU transitions to the burst-on state.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Harold A. Roberts, Nicholas A. Proite, Christopher T. Bernard, Peter O. Lee
  • Patent number: 10887021
    Abstract: Techniques are described for configuring an optical network unit (ONU) in a pre-burst state prior to transitioning the ONU to a burst-on state. During the pre-burst state, a laser emitter of the ONU stabilizes to its wavelength, thereby reducing the impact of wavelength drift when the ONU transitions to the burst-on state.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: January 5, 2021
    Assignee: Calix, Inc.
    Inventors: Harold A. Roberts, Nicholas A. Proite, Christopher T. Bernard, Peter O. Lee
  • Publication number: 20200220623
    Abstract: Techniques are described for configuring an optical network unit (ONU) in a pre-burst state prior to transitioning the ONU to a burst-on state. During the pre-burst state, a laser emitter of the ONU stabilizes to its wavelength, thereby reducing the impact of wavelength drift when the ONU transitions to the burst-on state.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 9, 2020
    Inventors: Harold A. Roberts, Nicholas A. Proite, Christopher T. Bernard, Peter O. Lee
  • Patent number: 10158421
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: December 18, 2018
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Mark R. Biegert, Charles J. Eddleston, Gregg C. Heikkinnen, Curtis L. Kruse
  • Patent number: 10097910
    Abstract: Techniques are described for obtaining, by an optical network device (OND) coupled to an optical network, physical layer data of the optical network; generating, by the OND, an encapsulated representation of the physical layer data of the optical network; and outputting the encapsulated representation of the physical layer data to a diagnostic device.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 9, 2018
    Assignee: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard
  • Patent number: 10014938
    Abstract: Techniques are described for indicating a wavelength at which a network interface device is configured to operate. A first controller circuit may determine a wavelength at which the network interface device is operating. The wavelength at which the network interface device is operating includes at least one of an optical wavelength at which a laser of the network interface device is transmitting optical data or an optical wavelength at which a photodiode of the network interface device is receiving optical data. A second controller circuit may cause the network interface device to output a sensory output that indicates the wavelength at which the network interface device is operating.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: July 3, 2018
    Assignee: Calix, Inc.
    Inventor: Christopher T. Bernard
  • Publication number: 20170257163
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventors: Christopher T. Bernard, Mark R. Biegert, Charles J. Eddleston, Gregg C. Heikkinnen, Curtis L. Kruse
  • Patent number: 9692505
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: June 27, 2017
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Mark R. Biegert, Charles J. Eddleston, Gregg C. Heikkinnen, Curtis L. Kruse
  • Publication number: 20170142506
    Abstract: Techniques are described for obtaining, by an optical network device (OND) coupled to an optical network, physical layer data of the optical network; generating, by the OND, an encapsulated representation of the physical layer data of the optical network; and outputting the encapsulated representation of the physical layer data to a diagnostic device.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Inventors: Charles J. Eddleston, Christopher T. Bernard
  • Publication number: 20170117962
    Abstract: Techniques are described for indicating a wavelength at which a network interface device is configured to operate. A first controller circuit may determine a wavelength at which the network interface device is operating. The wavelength at which the network interface device is operating includes at least one of an optical wavelength at which a laser of the network interface device is transmitting optical data or an optical wavelength at which a photodiode of the network interface device is receiving optical data. A second controller circuit may cause the network interface device to output a sensory output that indicates the wavelength at which the network interface device is operating.
    Type: Application
    Filed: August 18, 2016
    Publication date: April 27, 2017
    Inventor: Christopher T. Bernard
  • Patent number: 9591386
    Abstract: Techniques are described for obtaining, by an optical network device (OND) coupled to an optical network, physical layer data of the optical network; generating, by the OND, an encapsulated representation of the physical layer data of the optical network; and outputting the encapsulated representation of the physical layer data to a diagnostic device.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 7, 2017
    Assignee: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard
  • Patent number: 9515725
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: December 6, 2016
    Assignee: Calix, Inc.
    Inventor: Christopher T. Bernard
  • Patent number: 9496952
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: November 15, 2016
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Mark R. Biegert
  • Patent number: 9391768
    Abstract: One or more devices of a network having asymmetric delay are configured to participate in time synchronization protocol sessions in which a client device synchronizes its local clock to a master device. In one example, a system includes an optical line terminal configured to receive a time synchronization protocol packet from a grandmaster clock and an optical network unit (ONU) configured to calculate a residence time of the time synchronization protocol packet, encode the residence time into the packet, and to forward the packet to a client device. Moreover, the system may participate in a plurality of time synchronization protocol sessions with a plurality of client devices, such that the client devices become synchronized in frequency and phase.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: July 12, 2016
    Assignee: Calix, Inc.
    Inventors: Harold A. Roberts, Christopher T. Bernard, Jason W. Dove, Berkay Baykal
  • Publication number: 20160066073
    Abstract: Techniques are described for obtaining, by an optical network device (OND) coupled to an optical network, physical layer data of the optical network; generating, by the OND, an encapsulated representation of the physical layer data of the optical network; and outputting the encapsulated representation of the physical layer data to a diagnostic device.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Charles J. Eddleston, Christopher T. Bernard
  • Publication number: 20150326311
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: Christopher T. Bernard, Mark R. Biegert
  • Publication number: 20150326591
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: Christopher T. Bernard, Mark R. Biegert, Charles J. Eddleston, Gregg C. Heikkinnen, Curtis L. Kruse
  • Publication number: 20150326958
    Abstract: Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventor: Christopher T. Bernard
  • Patent number: 9178613
    Abstract: Techniques are disclosed that relate to synchronizing a clock on a network interface device with a clock on an optical line terminal (OLT). In one example, the technique to synchronizing the clocks may include monitoring one or more instances when the network interface device transmits information to the OLT and determining when a frame should be received by the network interface device based on the monitored one or more instances when the network interface device transmits information the OLT.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 3, 2015
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Dean M. Dunnigan