Patents by Inventor Christopher T. Bernard

Christopher T. Bernard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8837481
    Abstract: In general, techniques are described for inline packet replication in network devices. A network device referred to as an optical line terminal (OLT) may implement the techniques. The OLT comprises a customer interface that supports different logical interfaces to which couple a plurality of optical network terminals (ONTs) and a network interface that receives a data unit. The OLT further comprises a conversion unit, such as a media access control (MAC) module, located in a data path of the optical line terminal that determines whether the received data unit is a candidate for replication. The conversion unit includes an inline packet processing module that performs replication to generate at least one copy of the data unit based on the determination that the received packet is a candidate for packet replication. The customer interface outputs the at least one copy of the data unit to the ONTs.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard, Duane M. Butler
  • Publication number: 20140226984
    Abstract: One or more devices of a network having asymmetric delay are configured to participate in time synchronization protocol sessions in which a client device synchronizes its local clock to a master device. In one example, a system includes an optical line terminal configured to receive a time synchronization protocol packet from a grandmaster clock and an optical network unit (ONU) configured to calculate a residence time of the time synchronization protocol packet, encode the residence time into the packet, and to forward the packet to a client device. Moreover, the system may participate in a plurality of time synchronization protocol sessions with a plurality of client devices, such that the client devices become synchronized in frequency and phase.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: Calix, Inc.
    Inventors: Harold A. Roberts, Christopher T. Bernard, Jason W. Dove, Berkay Baykal
  • Patent number: 8731198
    Abstract: In general, techniques are described for protecting optical networks from consecutive identical digit (CID) errors. An optical network device comprising a control unit and an interface may implement the techniques described in this disclosure. The control unit determines whether a data packet will result in a CID error prior to encapsulating at least a portion of the data packet to form a passive optical network (PON) frame and then, in response to the determination that the data packet will result in the CID error, modifies the data packet to form a modified data packet so that the modified data packet will not result in the CID error. The control unit encapsulates the modified data packet to form a PON frame. The control unit applies a scrambling polynomial to the PON frame to form a scrambled PON frame. The interface transmits the scrambled PON frame.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Patent number: 8718482
    Abstract: One or more devices of a network having asymmetric delay are configured to participate in time synchronization protocol sessions in which a client device synchronizes its local clock to a master device. In one example, a system includes an optical line terminal configured to receive a time synchronization protocol packet from a grandmaster clock and an optical network unit (ONU) configured to calculate a residence time of the time synchronization protocol packet, encode the residence time into the packet, and to forward the packet to a client device. Moreover, the system may participate in a plurality of time synchronization protocol sessions with a plurality of client devices, such that the client devices become synchronized in frequency and phase.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: May 6, 2014
    Assignee: Calix, Inc.
    Inventors: Harold A. Roberts, Christopher T. Bernard, Jason W. Dove, Berkay Baykal
  • Publication number: 20140105597
    Abstract: Techniques are disclosed that relate to synchronizing a clock on a network interface device with a clock on an optical line terminal (OLT). In one example, the technique to synchronizing the clocks may include monitoring one or more instances when the network interface device transmits information to the OLT and determining when a frame should be received by the network interface device based on the monitored one or more instances when the network interface device transmits information the OLT.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 17, 2014
    Applicant: Calix, Inc.
    Inventors: Christopher T. Bernard, Dean M. Dunnigan
  • Patent number: 8630546
    Abstract: Techniques are disclosed that relate to synchronizing a clock on a network interface device with a clock on an optical line terminal (OLT). In one example, the technique to synchronizing the clocks may include monitoring one or more instances when the network interface device transmits information to the OLT and determining when a frame should be received by the network interface device based on the monitored one or more instances when the network interface device transmits information the OLT.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 14, 2014
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Dean M. Dunnigan
  • Patent number: 8600057
    Abstract: An example method includes encapsulating, by an optical network device, at least a portion of a data packet to form a passive optical network (PON) frame. The method further includes applying, by the optical network device, a scrambling polynomial to at least a portion of the PON frame to generate a scrambled PON frame. The method further includes determining, by the optical network device, that the scrambled PON frame comprises a consecutive identical digit (CID) sequence greater than a threshold length. The method further includes replacing, by the optical network device the determined CID sequence with a correction pattern to generate a modified scrambled PON frame. The method further includes transmitting, by the optical network device, the modified scrambled PON frame.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Patent number: 8559440
    Abstract: The disclosure presents techniques for merging multiple data flows in a network such as a Passive Optical Network (PON). The PON comprises an interface module and network nodes connected to the interface module via an optical fiber link. Each network node further serves client devices. The client devices request multiple data flows, requiring the interface module to serve multiple data flows to a network node for delivery to the devices. The interface module merges received data flows to permit multiple flows to be processed by a single segmentation and reassembly (SAR) engine, reducing hardware cost and complexity within the node. However, subunits associated with different data flows within a merged data flow are not interleaved with one another. Instead, the subunits associated with an original unit of information are transmitted contiguously within the merged data flow, facilitating identification and reassembly of the subunits for a particular microflow.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 15, 2013
    Assignee: Calix, Inc.
    Inventors: Duane M. Butler, Mike Conner, Christopher T. Bernard, Christopher D. Koch
  • Publication number: 20130202113
    Abstract: In general, techniques are described for protecting optical networks from consecutive identical digit (CID) errors. An optical network device comprising a control unit and an interface may implement the techniques described in this disclosure. The control unit determines whether a data packet will result in a CID error prior to encapsulating at least a portion of the data packet to form a passive optical network (PON) frame and then, in response to the determination that the data packet will result in the CID error, modifies the data packet to form a modified data packet so that the modified data packet will not result in the CID error. The control unit encapsulates the modified data packet to form a PON frame. The control unit applies a scrambling polynomial to the PON frame to form a scrambled PON frame. The interface transmits the scrambled PON frame.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: CALIX, INC.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Publication number: 20130202112
    Abstract: An example method includes encapsulating, by an optical network device, at least a portion of a data packet to form a passive optical network (PON) frame. The method further includes applying, by the optical network device, a scrambling polynomial to at least a portion of the PON frame to generate a scrambled PON frame. The method further includes determining, by the optical network device, that the scrambled PON frame comprises a consecutive identical digit (CID) sequence greater than a threshold length. The method further includes replacing, by the optical network device the determined CID sequence with a correction pattern to generate a modified scrambled PON frame. The method further includes transmitting, by the optical network device, the modified scrambled PON frame.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: CALIX, INC.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Patent number: 8325727
    Abstract: In general, techniques are described for inline packet replication in network devices. A network device referred to as an optical line terminal (OLT) may implement the techniques. The OLT comprises a customer interface that supports different logical interfaces to which couple a plurality of optical network terminals (ONTs) and a network interface that receives a data unit. The OLT further comprises a conversion unit, such as a media access control (MAC) module, located in a data path of the optical line terminal that determines whether the received data unit is a candidate for replication. The conversion unit includes an inline packet processing module that performs replication to generate at least one copy of the data unit based on the determination that the received packet is a candidate for packet replication. The customer interface outputs the at least one copy of the data unit to the ONTs.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: December 4, 2012
    Assignee: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard, Duane M. Butler
  • Patent number: 8244126
    Abstract: This disclosure is directed to techniques for facilitating clock recovery in optical networks. An optical network terminal (ONT) that terminates a fiber link of an optical network includes a clock mode selection module that automatically selects a clock recovery mode based on a type of optical network to which the ONT connects and a type of service provided to one or more subscriber devices coupled to the ONT. By automatically selecting the clock recovery module, an administrator or other user need not provision this aspect of the optical network, thereby reducing administrative tasks and facilitating the provisioning of the optical network. In addition, the techniques enable selection of the most optimal clock recovery mode based on the current state of the optical network.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 14, 2012
    Assignee: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard, Jason W. Dove
  • Publication number: 20120106976
    Abstract: Techniques are disclosed that relate to synchronizing a clock on a network interface device with a clock on an optical line terminal (OLT). In one example, the technique to synchronizing the clocks may include monitoring one or more instances when the network interface device transmits information to the OLT and determining when a frame should be received by the network interface device based on the monitored one or more instances when the network interface device transmits information the OLT.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: Calix, Inc.
    Inventors: Christopher T. Bernard, Dean M. Dunnigan
  • Patent number: 8139605
    Abstract: This disclosure is directed to devices and methods for facilitating the upgrade of optical networks. An optical network terminal (ONT) that terminates an optical fiber link of an optical network comprises two or more transport engines that each converts data transmitted via different transports to data corresponding to a service. For example, the ONT may include a first transport engine and a second transport engine. The first transport engine converts data received over the optical network via a first transport, e.g., a legacy transport, into data corresponding to a service for one or more subscriber devices. The second transport engine converts the data received over the optical network via a second transport, e.g., a next generation transport, into the data corresponding to the service for the subscriber devices. The ONT is selectively configurable to select one of the first and second transport engines, thereby making the ONT upgrade-resilient.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: March 20, 2012
    Assignee: Calix, Inc.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Publication number: 20110249970
    Abstract: In general, techniques are described for inline packet replication in network devices. A network device referred to as an optical line terminal (OLT) may implement the techniques. The OLT comprises a customer interface that supports different logical interfaces to which couple a plurality of optical network terminals (ONTs) and a network interface that receives a data unit. The OLT further comprises a conversion unit, such as a media access control (MAC) module, located in a data path of the optical line terminal that determines whether the received data unit is a candidate for replication. The conversion unit includes an inline packet processing module that performs replication to generate at least one copy of the data unit based on the determination that the received packet is a candidate for packet replication. The customer interface outputs the at least one copy of the data unit to the ONTs.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: Calix, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard, Duane M. Butler
  • Publication number: 20110032951
    Abstract: The disclosure presents techniques for merging multiple data flows in a network such as a Passive Optical Network (PON). The PON comprises an interface module and network nodes connected to the interface module via an optical fiber link. Each network node further serves client devices. The client devices request multiple data flows, requiring the interface module to serve multiple data flows to a network node for delivery to the devices. The interface module merges received data flows to permit multiple flows to be processed by a single segmentation and reassembly (SAR) engine, reducing hardware cost and complexity within the node. However, subunits associated with different data flows within a merged data flow are not interleaved with one another. Instead, the subunits associated with an original unit of information are transmitted contiguously within the merged data flow, facilitating identification and reassembly of the subunits for a particular microflow.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Applicant: Calix, Inc.
    Inventors: Duane M. Butler, Mike Conner, Christopher T. Bernard, Christopher D. Koch
  • Patent number: 7843939
    Abstract: The disclosure presents techniques for merging multiple data flows in a network such as a Passive Optical Network (PON). The PON comprises an interface module and network nodes connected to the interface module via an optical fiber link. Each network node further serves client devices. The client devices request multiple data flows, requiring the interface module to serve multiple data flows to a network node for delivery to the devices. The interface module merges received data flows to permit multiple flows to be processed by a single segmentation and reassembly (SAR) engine, reducing hardware cost and complexity within the node. However, subunits associated with different data flows within a merged data flow are not interleaved with one another. Instead, the subunits associated with an original unit of information are transmitted contiguously within the merged data flow, facilitating identification and reassembly of the subunits for a particular microflow.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 30, 2010
    Assignee: Calix, Inc.
    Inventors: Duane M. Butler, Mike Conner, Christopher T. Bernard, Christopher D. Koch
  • Publication number: 20100135657
    Abstract: This disclosure is directed to techniques for facilitating clock recovery in optical networks. An optical network terminal (ONT) that terminates a fiber link of an optical network includes a clock mode selection module that automatically selects a clock recovery mode based on a type of optical network to which the ONT connects and a type of service provided to one or more subscriber devices coupled to the ONT. By automatically selecting the clock recovery module, an administrator or other user need not provision this aspect of the optical network, thereby reducing administrative tasks and facilitating the provisioning of the optical network. In addition, the techniques enable selection of the most optimal clock recovery mode based on the current state of the optical network.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Applicant: Calix Networks, Inc.
    Inventors: Charles J. Eddleston, Christopher T. Bernard, Jason W. Dove
  • Publication number: 20090274463
    Abstract: This disclosure is directed to devices and methods for facilitating the upgrade of optical networks. An optical network terminal (ONT) that terminates an optical fiber link of an optical network comprises two or more transport engines that each converts data transmitted via different transports to data corresponding to a service. For example, the ONT may include a first transport engine and a second transport engine. The first transport engine converts data received over the optical network via a first transport, e.g., a legacy transport, into data corresponding to a service for one or more subscriber devices. The second transport engine converts the data received over the optical network via a second transport, e.g., a next generation transport, into the data corresponding to the service for the subscriber devices. The ONT is selectively configurable to select one of the first and second transport engines, thereby making the ONT upgrade-resilient.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 5, 2009
    Applicant: Calix, Inc.
    Inventors: Christopher T. Bernard, Charles J. Eddleston
  • Patent number: 7586920
    Abstract: The disclosure is directed to techniques for merging multiple data flows in a Passive Optical Network (PON). The PON comprises an interface module and a plurality of network nodes connected to the interface module via an optical fiber link. Each of the network nodes further serves client devices. The client devices request multiple data flows, requiring the interface module to serve multiple data flows to a network node for delivery to the devices. The interface module merges received data flows to permit multiple flows to be processed by a single segmentation and reassembly (SAR) engine, reducing hardware cost and complexity within the node. However, subunits associated with different data flows within a merged data flow are not interleaved with one another. Instead, the subunits associated with an original unit of information are transmitted contiguously within the merged data flow, facilitating identification and reassembly of the subunits for a particular microflow.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 8, 2009
    Assignee: Calix Networks, Inc.
    Inventors: Duane M. Butler, Mike Conner, Christopher T. Bernard, Christopher D. Koch