Patents by Inventor Chrong-Jung Lin

Chrong-Jung Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6734055
    Abstract: A method is provided for forming a highly dense stacked gate flash memory cell with a structure having multi floating gates that can assume 4 states and, therefore, store 2 bits at the same time. This is accomplished by providing a semiconductor substrate having gate oxide formed thereon, and shallow trench isolation and a p-well formed therein. A layer of nitride is next formed over the substrate and an opening formed therein. Polysilicon floating gate spacers are formed in the opening. A dielectric layer is then formed over the floating gates followed by the forming of a control gate. The adjacent nitride layer is then removed leaving a multi-level structure comprising a control gate therebetween multi floating gates with the intervening dielectric layer.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 11, 2004
    Assignee: Taiwan Semiconductor Manufactoring Company
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Hsin-Ming Chen
  • Patent number: 6724036
    Abstract: A stacked-gate flash memory cell having a shallow trench isolation with a high-step of oxide and high lateral coupling is described. An unconventionally high isolation oxide layer is formed in a shallow trench isolation (STI) in a substrate. The deep opening in the space between the STIs is conformally lined with a polysilicon to form a floating gate extending above the opening. A conformal intergate oxide lines the entire floating gate. A layer of polysilicon overlays the intergate oxide and protrudes downward into the openings to form a control gate with increased coupling to the floating gate.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: April 20, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chia-Ta Hsieh, Di-Son Kuo, Yai-Fen Lin, Chrong Jung Lin, Jong Chen, Hung-Der Su
  • Publication number: 20030166324
    Abstract: A method is disclosed for forming LDDs (Lightly Doped Drains) in high voltage devices employed in non-volatile memories and DDDs (Doubly Doped Drains) in flash memory applications. The high voltage device is formed by using two successive ion implantations at a tilted angle which provides an improved gradation of doped profile near the junction and the attendant improvement in junction breakdown at higher voltages. The doubly doped drain in a stacked flash memory cell is also formed by two implantations, but at an optimum tilt-angle, where the first implantation is lightly doped, and the second, heavily doped. The resulting DDD provides faster program speed, reduced program current, increase read current and reduced drain disturb in the flash memory cell.
    Type: Application
    Filed: August 20, 2001
    Publication date: September 4, 2003
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chrong-Jung Lin, Hung-Der Su, Jong Chen, Wen-Ting Chu
  • Publication number: 20030157770
    Abstract: A method of making the selection gate in a split-gate flash EEPROM cell forms a selection gate on a trench sidewall of a semiconductor substrate to minimize the sidewise dimension of the selection gate and to maintain the channel length. The disclosed method includes the steps of: forming a trench on a semiconductor substrate on one side of a suspending gate structure; forming an inter polysilicon dielectric layer on the sidewall of the suspending gate structure and the trench; and forming a polysilicon spacer on the inter polysilicon dielectric layer as the selection gate. Such a split-gate flash EEPROM cell can produce ballistic hot electrons, improving the data writing efficiency and lowering the writing voltage.
    Type: Application
    Filed: January 31, 2003
    Publication date: August 21, 2003
    Inventors: Wen-Ting Chu, Jack Yeh, Chrong-Jung Lin
  • Patent number: 6586765
    Abstract: A test structure for evaluating plasma damage in thin gate oxides is formed with a single polysilicon floating gate EEPROM device on which an antenna structure delivers charge to a floating gate through a tunnel oxide. The floating gate extends beyond the MOSFET channel in one direction, passing over field oxide and terminating in a pad over a thin tunnel oxide window formed over an isolated n+ diffusion. The n+ diffusion is connected to a metal antenna structure which is exposed to a processing plasma. Charge accumulated on the antenna during plasma exposure causes a tunnel current to flow through the tunnel oxide, and charge to accumulate on the floating gate. A second extension of the polysilicon floating gate passes over a second field oxide region and terminates in a pad over a thicker oxide formed on a second isolated n+ diffusion. The second n+ diffusion forms the control gate of the EEPROM and is connected by wiring to a probe pad.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: July 1, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Hsin Ming Chen
  • Patent number: 6583466
    Abstract: A vertical transistor memory device includes FET cells formed in rows and columns with the rows orthogonally arranged relative to the columns. Several cells in a single row have a common source region and adjacent cells have a common drain region FOX regions are formed between the rows. A set of trenches are formed with sidewalls and a bottom in a semiconductor substrate with threshold implant regions formed in the sidewalls. Doped drain regions are formed near the surface of the substrate and doped source regions are formed in the base of the device below the trenches with oppositely doped channel regions therebetween. A tunnel oxide layer is formed over the substrate including the trenches aside from FOX regions. Floating gates of doped polysilicon are formed over the tunnel oxide layer in the trenches. An interelectrode dielectric layer covers the floating gate layer. Control gate electrodes of doped polysilicon are formed over the interelectrode dielectric layer.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: June 24, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Di-Son Kuo
  • Patent number: 6576558
    Abstract: A trench is etched through the layers of pad oxide and silicon nitride that have been deposited on a substrate, the patterned layer of photoresist is left in place. A tilt angle nitrogen implant is performed into the surface of the substrate, a deep shallow STI trench is etched into the surface of the substrate. An oxygen implant of moderate intensity is performed in the created STI trench, the photoresist is removed. An anneal is performed on the implanted oxygen. A liner oxide is grown within the opening, High Density Plasma (HDP) oxide is deposited inside the opening and the top surface of the remaining silicon oxide. CMP is performed to the surface of the HDP oxide down to the surface of the pad oxide that completes the formation of the STI region under the first embodiment of the invention. The invention can be further extended by creating a LOCOS layer at the bottom of the STI opening or by further etching the bottom of the STI opening.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: June 10, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen
  • Patent number: 6548856
    Abstract: A method of forming a vertical transistor memory device comprises the following process steps. Before forming the trenches, FOX regions are formed between the rows. Then form a set of trenches with sidewalls and a bottom in a semiconductor substrate with threshold implant regions the sidewalls. Form doped drain regions near the surface of the substrate and doped source regions in the base of the device below the trenches with oppositely doped channel regions therebetween. Form a tunnel oxide layer over the substrate including the trenches. Form a blanket thin floating gate layer of doped polysilicon over the tunnel oxide layer extending above the trenches. Etch the floating gate layer leaving upright floating gate strips of the floating gate layer along the sidewalls of the trenches. Form an interelectrode dielectric layer composed of ONO over the floating gate layer and over the tunnel oxide layer. Form a blanket thin control gate layer of doped polysilicon over the interelectrode dielectric layer.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: April 15, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong-Jung Lin, Shui-Hung Chen, Mong-Song Liang
  • Patent number: 6544828
    Abstract: A method for improving the endurance and robustness of high voltage NMOS devices by forming a conductive field plate at the edge of a shallow trench isolation region at the drain side only is described. Active areas are separated by isolation regions in a substrate. A gate oxide layer is grown on the active areas. A conducting layer is deposited overlying the gate oxide layer and patterned to form gate electrodes in the active areas and to form conductive strips overlapping both the active areas and the isolation areas at an isolation's edge on a drain side of the active areas wherein the conductive strips reduce the electric field at the isolation's edge in the fabrication of an integrated circuit device.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: April 8, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wen-Ting Chu, Di-Son Kuo, Jack Yeh, Chia-Ta Hsieh, Chrong-Jung Lin, Sheng-Wei Tsaur
  • Patent number: 6495880
    Abstract: A new method of fabricating a stacked gate Flash EEPROM device having an improved stacked gate topology is described. Isolation regions are formed on and in a semiconductor substrate. A tunneling oxide layer is provided on the surface of the semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. The first polysilicon layer is polished away until the top surface of the polysilicon is flat and parallel to the top surface of the semiconductor substrate. The first polysilicon layer is etched away to form the floating gate. The source and drain regions are formed within the semiconductor substrate. An interpoly dielectric layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly dielectric layer. The second polysilicon layer and the interpoly dielectric layer are etched away to form a control gate overlying the floating gate. An insulating layer is deposited overlying the oxide layer and the control gate.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: December 17, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Jong Chen, Hung-Der Su, Di-Son Kuo
  • Publication number: 20020151136
    Abstract: A method of forming a vertical transistor memory device includes the following steps. Before forming the trenches, FOX regions are formed between the rows. Form a set of trenches with sidewalls and a bottom in a semiconductor substrate with threshold implant regions the sidewalls. Form doped drain regions near the surface of the substrate and doped source regions in the base of the device below the trenches with oppositely doped channel regions therebetween. Form a tunnel oxide layer over the substrate including the trenches. Form a blanket thick floating gate layer of doped polysilicon over the tunnel oxide layer filling the trenches and extending above the trenches. Etch the floating gate layer down below the top of the trenches. Form an interelectrode dielectric layer composed of ONO over the floating gate layer and over the tunnel oxide layer. Form a blanket thick control gate layer of doped polysilicon over the interelectrode dielectric layer. Pattern the control gate layer into control gate electrodes.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 17, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Di-Son Kuo
  • Patent number: 6465836
    Abstract: Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is formed within a semiconductor substrate a trench within whose sidewall is fully contained a channel region within the split gate field effect transistor (FET) device. Similarly, there is also formed within the split gate field effect transistor a floating gate electrode within the trench and covering within the trench a lower sub-portion of the channel region. Finally, the floating gate electrode in turn has formed vertically and horizontally overlapping thereover within the trench a control gate electrode which covers an upper sub-portion of the channel. The split gate field effect transistor (FET) device is fabricated with enhanced areal density and enhanced performance.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 15, 2002
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chrong Jung Lin, Sheng-Wei Tsao, Di-Son Kuo, Jack Yeh, Wen-Ting Chu, Chung-Li Chang, Chia-Ta Hsieh
  • Publication number: 20020140022
    Abstract: Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is formed within a semiconductor substrate a trench within whose sidewall is fully contained a channel region within the split gate field effect transistor (FET) device. Similarly, there is also formed within the split gate field effect transistor a floating gate electrode within the trench and covering within the trench a lower sub-portion of the channel region. Finally, the floating gate electrode in turn has formed vertically and horizontally overlapping thereover within the trench a control gate electrode which covers an upper sub-portion of the channel. The split gate field effect transistor (FET) device is fabricated with enhanced areal density and enhanced performance.
    Type: Application
    Filed: March 29, 2001
    Publication date: October 3, 2002
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chrong Jung Lin, Sheng-Wei Tsao, Di-Son Kuo, Jack Yeh, Wen-Ting Chu, Chung-Li Chang, Chia-Ta Hsieh
  • Patent number: 6437397
    Abstract: A vertical memory device on a silicon semiconductor substrate is formed by the following steps. Form an array of isolation silicon oxide structures on the surface of the silicon semiconductor substrate. Form a floating gate trench in the silicon semiconductor substrate between the silicon oxide structures in the array, the trench having trench sidewall surfaces. Dope the sidewalls of the floating gate trench with a threshold implant through the trench sidewall surfaces. Form a tunnel oxide layer on the trench sidewall surfaces, the tunnel oxide layer having an outer surface. Form a floating gate electrode in the trench on the outer surface of the tunnel oxide layer. Form source/drain regions in the substrate self-aligned with the floating gate electrode. Form an interelectrode dielectric layer over the top surface of the floating gate electrode. Form a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: August 20, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Jong Chen, Di-Son Kuo
  • Patent number: 6437408
    Abstract: A plasma damage protection cell using floating N/P/N and P/N/P structure, and a method to form the same are disclosed. Floating structures of the protection cell and the floating gates for the MOS devices are formed simultaneously on a semiconductor substrate having shallow trench isolation. The floating structures are implanted separately to form the N/P/N and P/N/P bipolar base, emitter and collector regions while the source/drain of the respective NMOS and PMOS devices are implanted with appropriate sequencing. The floating structures are connected to the substrate with appropriate polarity to provide protection at low leakage current levels and with tunable punch-through voltages.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: August 20, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jiaw-Ren Shih, Shui-Hung Shen, Jian-Hsing Lee, Chrong Jung Lin
  • Publication number: 20020098647
    Abstract: Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is employed a doped polysilicon floating gate electrode having an central annular portion having a higher dopant concentration than a peripheral annular portion of the doped polysilicon floating gate electrode. The higher dopant concentration within the central annular portion of the doped polysilicon floating gate electrode provides enhanced programming speed properties of the split gate field effect transistor (FET) device. The lower dopant concentration within the peripheral annular portion of the doped polysilicon floating gate electrode provides enhanced erasing speed properties within the split gate field effect transistor (FET) device under certain circumstances of fabrication of the split gate field effect transistor (FET) device.
    Type: Application
    Filed: January 19, 2001
    Publication date: July 25, 2002
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ta Hsieh, Di-Son Kuo, Jake Yeh, Chung-Li Chang, Wen-Ting Chu, Chrong-Jung Lin
  • Publication number: 20020098604
    Abstract: A test structure for evaluating plasma damage in thin gate oxides is formed with a single polysilicon floating gate EEPROM device on which an antenna structure delivers charge to a floating gate through a tunnel oxide. The floating gate extends beyond the MOSFET channel in one direction, passing over field oxide and terminating in a pad over a thin tunnel oxide window formed over an isolated n+ diffusion. The n+ diffusion is connected to a metal antenna structure which is exposed to a processing plasma. Charge accumulated on the antenna during plasma exposure causes a tunnel current to flow through the tunnel oxide, and charge to accumulate on the floating gate. A second extension of the polysilicon floating gate passes over a second field oxide region and terminates in a pad over a thicker oxide formed on a second isolated n+ diffusion. The second n+ diffusion forms the control gate of the EEPROM and is connected by wiring to a probe pad.
    Type: Application
    Filed: February 19, 2002
    Publication date: July 25, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chrong Jung Lin, Hsin Ming Chen
  • Patent number: 6420233
    Abstract: Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is employed a doped polysilicon floating gate electrode having an central annular portion having a higher dopant concentration than a peripheral annular portion of the doped polysilicon floating gate electrode. The higher dopant concentration within the central annular portion of the doped polysilicon floating gate electrode provides enhanced programming speed properties of the split gate field effect transistor (FET) device. The lower dopant concentration within the peripheral annular portion of the doped polysilicon floating gate electrode provides enhanced erasing speed properties within the split gate field effect transistor (FET) device under certain circumstances of fabrication of the split gate field effect transistor (FET) device.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: July 16, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Chia-Ta Hsieh, Di-Son Kuo, Jake Yeh, Chung-Li Chang, Wen-Ting Chu, Chrong-Jung Lin
  • Patent number: 6391719
    Abstract: A method of forming a vertical transistor memory device includes the following steps. Before forming the trenches, FOX regions are formed between the rows. Form a set of trenches with sidewalls and a bottom in a semiconductor substrate with threshold implant regions the sidewalls. Form doped drain regions near the surface of the substrate and doped source regions in the base of the device below the trenches with oppositely doped channel regions therebetween. Form a tunnel oxide layer over the substrate including the trenches. Form a blanket thick floating gate layer of doped polysilicon over the tunnel oxide layer filling the trenches and extending above the trenches. Etch the floating gate layer down below the top of the trenches. Form an interelectrode dielectric layer composed of ONO over the floating gate layer and over the tunnel oxide layer. Form a blanket thick control gate layer of doped polysilicon over the interelectrode dielectric layer. Pattern the control gate layer into control gate electrodes.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: May 21, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Shui-Hung Chen, Di-Son Kuo
  • Patent number: 6372525
    Abstract: A test structure for evaluating plasma damage in thin gate oxides is formed with a single polysilicon floating gate EEPROM device on which an antenna structure delivers charge to a floating gate through a tunnel oxide. The floating gate extends beyond the MOSFET channel in one direction, passing over field oxide and terminating in a pad over a thin tunnel oxide window formed over an isolated n+ diffusion. The n+ diffusion is connected to a metal antenna structure which is exposed to a processing plasma. Charge accumulated on the antenna during plasma exposure causes a tunnel current to flow through the tunnel oxide, and charge to accumulate on the floating gate. A second extension of the polysilicon floating gate passes over a second field oxide region and terminates in a pad over a thicker oxide formed on a second isolated n+ diffusion. The second n+ diffusion forms the control gate of the EEPROM and is connected by wiring to a probe pad.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: April 16, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Hsin Ming Chen