Patents by Inventor Chun-Feng Nieh

Chun-Feng Nieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8497177
    Abstract: A method for fabricating a fin field-effect transistor (FinFET) device includes providing a substrate having a first fin at a first location, and epitaxially growing a second fin on the substrate at the first location. The epitaxial growth is performed at a first temperature. The method further includes performing a thermal annealing at a second temperature in oxygen ambient on the substrate with the second fin thereon to grow an interface wrapping over the second fin. The second temperature is higher than the first temperature.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 30, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huicheng Chang, Jeff J. Xu, Hung-Ta Lin, Chun-Feng Nieh
  • Patent number: 8487354
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, forming a material layer over the substrate and the gate structure, implanting Ge, C, P, F, or B in the material layer, removing portions of the material layer overlying the substrate at either side of the gate structure, forming recesses in the substrate at either side of the gate structure, and depositing a semiconductor material in the recesses by an expitaxy process.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 16, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Yu Chen, Hsien-Hsin Lin, Chun-Feng Nieh, Hsueh-Chang Sung, Chien-Chang Su, Tsz-Mei Kwok
  • Publication number: 20130137238
    Abstract: Provided is a method of fabricating a semiconductor device. The method includes forming a buffer layer over a surface of a silicon substrate. The method further includes forming openings that extend into the buffer layer. The method includes forming a shallow trench isolation (STI) structures in each of the openings. The method includes removing a predetermined amount of a top surface of the buffer layer relative to a top surface of the STI structures. The method includes forming an insulator layer over the top surface of the buffer layer and forming a channel layer over the insulator layer.
    Type: Application
    Filed: February 28, 2012
    Publication date: May 30, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Feng NIEH, Huicheng CHANG, Hung-Ta LIN
  • Publication number: 20130099283
    Abstract: A device includes insulation regions over portions of a semiconductor substrate, and a III-V compound semiconductor region over top surfaces of the insulation regions, wherein the III-V compound semiconductor region overlaps a region between opposite sidewalls of the insulation regions. The III-V compound semiconductor region includes a first and a second III-V compound semiconductor layer formed of a first III-V compound semiconductor material having a first band gap, and a third III-V compound semiconductor layer formed of a second III-V compound semiconductor material between the first and the second III-V compound semiconductor layers. The second III-V compound semiconductor material has a second band gap lower than the first band gap. A gate dielectric is formed on a sidewall and a top surface of the III-V compound semiconductor region. A gate electrode is formed over the gate dielectric.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Ta Lin, Chun-Feng Nieh, Chung-Yi Yu, Chi-Ming Chen
  • Publication number: 20130095642
    Abstract: Provided is a method of fabricating a semiconductor device. The method includes forming a first III-V family layer over a substrate. The first III-V family layer includes a surface having a first surface morphology. The method includes performing an ion implantation process to the first III-V family layer through the surface. The ion implantation process changes the first surface morphology into a second surface morphology. After the ion implantation process is performed, the method includes forming a second III-V family layer over the first III-V family layer. The second III-V family layer has a material composition different from that of the first III-V family layer.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Feng Nieh, Chung-Yi Yu, Hung-Ta Lin
  • Publication number: 20130078783
    Abstract: Provided is a method of fabricating a semiconductor device. The method includes forming a first dielectric layer over a first surface and a second surface of a silicon substrate. the first and second surfaces being opposite surfaces. A first portion of the first dielectric layer covers the first surface of the substrate, and a second portion of the first dielectric layer covers the second surface of the substrate. The method includes forming openings that extend into the substrate from the first surface. The method includes filling the openings with a second dielectric layer. The method includes removing the first portion of the first dielectric layer without removing the second portion of the first dielectric layer.
    Type: Application
    Filed: September 24, 2011
    Publication date: March 28, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Feng Nieh, Chung-Yi Yu, Hung-Ta Lin
  • Patent number: 8404546
    Abstract: A semiconductor device system, structure, and method of manufacture of a source/drain to retard dopant out-diffusion from a stressor are disclosed. An illustrative embodiment comprises a semiconductor substrate, device, and method to retard sidewall dopant out-diffusion in source/drain regions. A semiconductor substrate is provided with a gate structure, and a source and drain on opposing sides of the gate structure. Recessed regions are etched in a portion of the source and drain. Doped stressors are embedded into the recessed regions. A barrier dopant is incorporated into a remaining portion of the source and drain.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Yen Woon, Chun-Feng Nieh, Ching-Yi Chen, Hsun Chang, Chung-Ru Yang, Li-Te S. Lin
  • Patent number: 8405160
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a silicon substrate. The semiconductor device includes first and second regions that are disposed in the substrate. The first and second regions have a silicon compound material. The semiconductor device includes first and second source/drain structures that are partially disposed in the first and second regions, respectively. The semiconductor device includes a first gate that is disposed over the substrate. The first gate has a first proximity to the first region. The semiconductor device includes a second gate that is disposed over the substrate. The second gate has a second proximity to the second region. The second proximity is different from the first proximity. The first source/drain structure and the first gate are portions of a first transistor, and the second source/drain structure and the second gate are portions of a second transistor.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Fai Cheng, Fung Ka Hing, Ming-Huan Tsai, Chun-Feng Nieh, Yimin Huang, Han-Ting Tsai, Haiting Wang
  • Patent number: 8273633
    Abstract: A method of enhancing dopant activation without suffering additional dopant diffusion, includes forming shallow and lightly-doped source/drain extension regions in a semiconductor substrate, performing a first anneal process on the source/drain extension regions, forming deep and heavily-doped source/drain regions in the substrate adjacent to the source/drain extension regions, and performing a second anneal process on source/drain regions. The first anneal process is a flash anneal process performed for a time of between about 1 millisecond and 3 milliseconds, and the second anneal process is a rapid thermal anneal process performed for a time of between about 1 second and 30 seconds.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: September 25, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Keh-Chiang Kuo, Chien-Hao Chen, Chun-Feng Nieh, Li-Ping Huang, Hsun Chang, Li-Ting Wang, Chih-Chiang Wang, Tze-Liang Lee
  • Patent number: 8212253
    Abstract: A semiconductor structure comprises a gate stack in a semiconductor substrate and a lightly doped source/drain (LDD) region in the semiconductor substrate. The LDD region is adjacent to a region underlying the gate stack. The LDD region comprises carbon and an n-type impurity, and the n-type impurity comprises phosphorus tetramer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: July 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Feng Nieh, Keh-Chiang Ku, Nai-Han Cheng, Chi-Chun Chen, Li-Te S. Lin
  • Publication number: 20120108026
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of an integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite to the LDD region.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Feng NIEH, Ming-Huan TSAI, Wei-Han FAN, Yimin HUANG, Chun-Fai CHENG, Han-Ting TSAI, Chii-Ming WU
  • Publication number: 20120100686
    Abstract: A method of forming ultra-shallow lightly doped source/drain (LDD) regions of a CMOS transistor in a surface of a substrate includes the steps of providing a semiconductor substrate, providing a gate stack on the semiconductor substrate, performing a low temperature pocket implantation process on the substrate, performing a low temperature co-implanted ion implantation process on the substrate, and/or performing a low temperature lightly doped source/drain implantation process on the substrate.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Yuan LU, Li-Ping HUANG, Mao-Rong YEH, Chun-Feng NIEH
  • Publication number: 20110316079
    Abstract: A semiconductor structure comprises a gate stack in a semiconductor substrate and a lightly doped source/drain (LDD) region in the semiconductor substrate. The LDD region is adjacent to a region underlying the gate stack. The LDD region comprises carbon and an n-type impurity, and the n-type impurity comprises phosphorus tetramer.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Feng Nieh, Keh-Chiang Ku, Nai-Han Cheng, Chi-Chun Chen, Li-Te S. Lin
  • Publication number: 20110291201
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a silicon substrate. The semiconductor device includes first and second regions that are disposed in the substrate. The first and second regions have a silicon compound material. The semiconductor device includes first and second source/drain structures that are partially disposed in the first and second regions, respectively. The semiconductor device includes a first gate that is disposed over the substrate. The first gate has a first proximity to the first region. The semiconductor device includes a second gate that is disposed over the substrate. The second gate has a second proximity to the second region. The second proximity is different from the first proximity. The first source/drain structure and the first gate are portions of a first transistor, and the second source/drain structure and the second gate are portions of a second transistor.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Fai Cheng, Fung Ka Hing, Ming-Huan Tsai, Chun-Feng Nieh, Yimin Huang, Han-Ting Tsai, Haiting Wang
  • Patent number: 8039375
    Abstract: A method for forming a semiconductor structure includes providing a semiconductor substrate; forming a gate stack over the semiconductor substrate; implanting carbon into the semiconductor substrate; and implanting an n-type impurity into the semiconductor substrate to form a lightly doped source/drain (LDD) region, wherein the n-type impurity comprises more than one phosphorous atom. The n-type impurity may include phosphorous dimer or phosphorous tetramer.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: October 18, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Feng Nieh, Keh-Chiang Ku, Nai-Han Cheng, Chi-Chun Chen, Li-Te S. Lin
  • Publication number: 20110212590
    Abstract: An integrated circuit device and method of fabricating the integrated circuit device is disclosed. According to one of the broader forms of the invention, a method involves providing a semiconductor substrate. A combination of a pre-amorphous implantation process, a high temperature carbon implantation process, and/or an annealing process are performed on the substrate to form a stressor region.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chii-Ming Wu, Chun-Feng Nieh
  • Publication number: 20110212592
    Abstract: A method of forming MOS transistor includes the steps of performing a pocket implantation process on a substrate having a gate stack, performing a co-implanted ion implantation process on the substrate at a temperature less than room temperature, performing a lightly doped source/drain implantation process on the substrate, and forming source and drain regions in the substrate, adjacent the gate stack.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Feng NIEH, Mao-Rong Yeh, Chun Hsiung Tsai, Chii-Ming Wu
  • Patent number: 7994016
    Abstract: A method of forming ultra-shallow p-type lightly doped drain (LDD) regions of a PMOS transistor in a surface of a substrate includes the steps of providing a gaseous mixture of an inert gas, a boron-containing source, and an optional carbon-containing source, wherein the concentration of the gaseous mixture is at least 99.5% dilute with the inert gas and the optional carbon-containing source, if present, forming the gaseous mixture into a plasma, and forming the LDD regions, wherein the forming step includes plasma-doping the boron into the substrate using the plasma. N-type pocket regions are formed in the substrate underneath and adjacent to the LDD regions, wherein for a PMOS transistor having a threshold voltage of 100 mV, the n-type pocket regions include phosphorous impurities at a dopant concentration of less than 6.0×1018 atoms/cm3 or a proportionately lower/higher dopant concentration for a lower/higher threshold voltage.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Chun-Feng Nieh, Da-Wen Lin, Chien-Tai Chan
  • Publication number: 20110111571
    Abstract: A method of forming ultra-shallow p-type lightly doped drain (LDD) regions of a PMOS transistor in a surface of a substrate includes the steps of providing a gaseous mixture of an inert gas, a boron-containing source, and an optional carbon-containing source, wherein the concentration of the gaseous mixture is at least 99.5% dilute with the inert gas and the optional carbon-containing source, if present, forming the gaseous mixture into a plasma, and forming the LDD regions, wherein the forming step includes plasma-doping the boron into the substrate using the plasma. N-type pocket regions are formed in the substrate underneath and adjacent to the LDD regions, wherein for a PMOS transistor having a threshold voltage of 100 mV, the n-type pocket regions include phosphorous impurities at a dopant concentration of less than 6.0×1018 atoms/cm3 or a proportionately lower/higher dopant concentration for a lower/higher threshold voltage.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 12, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun Hsiung TSAI, Chun-Feng NIEH, Da-Wen LIN, Chien-Tai CHAN
  • Publication number: 20110042729
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, forming a material layer over the substrate and the gate structure, implanting Ge, C, P, F, or B in the material layer, removing portions of the material layer overlying the substrate at either side of the gate structure, forming recesses in the substrate at either side of the gate structure, and depositing a semiconductor material in the recesses by an expitaxy process.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Yu Chen, Hsien-Hsin Lin, Chun-Feng Nieh, Hsueh-Chang Sung, Chien-Chang Su, Tsz-Mei Kwok