Patents by Inventor Chun-I Wu

Chun-I Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250006739
    Abstract: A method of forming a complementary field-effect transistor (CFET) device includes: forming a plurality of channel regions stacked vertically over a fin; forming an isolation structure between a first subset of the plurality of channel regions and a second subset of the plurality of channel regions; forming a gate dielectric material around the plurality of channel regions and the isolation structure; forming a work function material around the gate dielectric material; forming a silicon-containing passivation layer around the work function material; after forming the silicon-containing passivation layer, removing a first portion of the silicon-containing passivation layer disposed around the first subset of the plurality of channel regions and keeping a second portion of the silicon-containing passivation layer disposed around the second subset of the plurality of channel regions; and after removing the first portion of the silicon-containing passivation layer, forming a gate fill material around the plurali
    Type: Application
    Filed: June 30, 2023
    Publication date: January 2, 2025
    Inventors: Cheng-Ming Lin, Chun-I Wu, Tsung-Kai Chiu, Wei-Yen Woon, Szuya Liao
  • Patent number: 12166074
    Abstract: A method includes removing a first dummy gate stack and a second dummy gate stack to form a first trench and a second trench. The first dummy gate stack and the second dummy gate stack are in a first device region and a second device region, respectively. The method further includes depositing a first gate dielectric layer and a second gate dielectric layer extending into the first trench and the second trench, respectively, forming a fluorine-containing layer comprising a first portion over the first gate dielectric layer, and a second portion over the second gate dielectric layer, removing the second portion, performing an annealing process to diffuse fluorine in the first portion into the first gate dielectric layer, and at a time after the annealing process, forming a first work-function layer and a second work-function layer over the first gate dielectric layer and the second gate dielectric layer, respectively.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: December 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Hsiang-Pi Chang, Huang-Lin Chao, Chung-Liang Cheng, Chi On Chui, Kun-Yu Lee, Tzer-Min Shen, Yen-Tien Tung, Chun-I Wu
  • Publication number: 20240387636
    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The method includes forming first and second nanostructured channel regions in first and second nanostructured layers, respectively, and forming first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The forming the first and second GAA structures includes selectively forming an Al-based n-type work function metal layer and a Si-based capping layer on the first nanostructured channel regions, depositing a bi-layer of Al-free p-type work function metal layers on the first and second nanostructured channel regions, depositing a fluorine blocking layer on the bi-layer of Al-free p-type work function layers, and depositing a gate metal fill layer on the fluorine blocking layer.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Liang CHEN, Chun-i Wu, Huang-Lin Chao
  • Publication number: 20240379777
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming a source/drain region on a side of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, depositing a metal-containing layer over the gate dielectric layer, and depositing a silicon-containing layer on the metal-containing layer. The metal-containing layer and the silicon-containing layer in combination act as a work-function layer. A planarization process is performed to remove excess portions of the silicon-containing layer, the metal-containing layer, and the gate dielectric layer, with remaining portions of the silicon-containing layer, the metal-containing layer, and the gate dielectric layer forming a gate stack.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui, Chun-I Wu, Huang-Lin Chao
  • Publication number: 20240363711
    Abstract: The embodiments described herein are directed to a method for the fabrication of transistors with aluminum-free n-type work function layers as opposed to aluminum-based n-type work function layers. The method includes forming a channel portion disposed between spaced apart source/drain epitaxial layers and forming a gate stack on the channel portion, where forming the gate stack includes depositing a high-k dielectric layer on the channel portion and depositing a p-type work function layer on the dielectric layer. After depositing the p-type work function layer, forming without a vacuum break, an aluminum-free n-type work function layer on the p-type work function layer and depositing a metal on the aluminum-free n-type work function layer. The method further includes depositing an insulating layer to surround the spaced apart source/drain epitaxial layers and the gate stack.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang, Chun-I Wu, Huang-Lin Chao
  • Patent number: 12132091
    Abstract: The embodiments described herein are directed to a method for the fabrication of transistors with aluminum-free n-type work function layers as opposed to aluminum-based n-type work function layers. The method includes forming a channel portion disposed between spaced apart source/drain epitaxial layers and forming a gate stack on the channel portion, where forming the gate stack includes depositing a high-k dielectric layer on the channel portion and depositing a p-type work function layer on the dielectric layer. After depositing the p-type work function layer, forming without a vacuum break, an aluminum-free n-type work function layer on the p-type work function layer and depositing a metal on the aluminum-free n-type work function layer. The method further includes depositing an insulating layer to surround the spaced apart source/drain epitaxial layers and the gate stack.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: October 29, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang, Chun-I Wu, Huang-Lin Chao
  • Patent number: 12119560
    Abstract: A phase shifter is provided, which includes a first substrate, a second substrate, a liquid crystal layer, a plurality of first ring-shaped electrodes and a plurality of second ring-shaped electrodes. The first substrate and the second substrate are disposed opposite to each other. The liquid crystal layer is disposed between the first substrate and the second substrate. The plurality of first ring-shaped electrodes are disposed sequentially and in interval on a side of the first substrate close to the liquid crystal layer. The plurality of second ring-shaped electrodes are disposed sequentially and in interval on a side of the second substrate close to the liquid crystal layer. A plurality of vertical projections, projected by the plurality of first ring-shaped electrodes to the second substrate, and at least partially overlapped with the plurality of second ring-shaped electrodes, respectively.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: October 15, 2024
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Shih-Yuan Chen, Hsiu-Ping Liao, Yi-Chen Hsieh, Chun-I Wu, Chuang-Yueh Lin, Yi-Hsiang Lai, Ching-Huan Lin
  • Patent number: 12040364
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate. The gate stack includes a gate dielectric layer, a first metal-containing layer, a silicon-containing layer, a second metal-containing layer, and a gate electrode layer sequentially stacked over the substrate, the silicon-containing layer is between the first metal-containing layer and the second metal-containing layer, and the silicon-containing layer includes an oxide material.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: July 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Wen Tsau, Chun-I Wu, Ziwei Fang, Huang-Lin Chao, I-Ming Chang, Chung-Liang Cheng, Chih-Cheng Lin
  • Publication number: 20240182851
    Abstract: The present disclosure provides methods for reprogramming a cell, wherein the method comprises passing a cell suspension comprising the cell and a reprogramming factor through a constriction, wherein the constriction deforms the cell, thereby causing a perturbation of the cell such that the reprogramming factor enters the cell.
    Type: Application
    Filed: April 4, 2022
    Publication date: June 6, 2024
    Applicant: SQZ Biotechnologies Company
    Inventors: Chun-I WU, Devin BRIDGEN, Jonathan B. GILBERT, Abdulkadir OZKAN, Marija TADIN-STRAPPS
  • Patent number: 11990558
    Abstract: A method for producing a transferable array of light emitting devices includes forming a plurality of light emitting devices on a temporary substrate, forming at least one supporting member that is directly connected to a release layer of at least one of the light emitting devices, connecting a supporting substrate only with the at least one supporting member so that the at least one supporting member extends from the release layer of the at least one of the light emitting devices to the supporting substrate and so that the light emitting devices are spaced apart from the supporting substrate, and removing the temporary substrate. The transferable array produced by the method is also disclosed.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 21, 2024
    Assignee: Xiamen San'an Optoelectronics Co., Ltd.
    Inventors: Cheng Meng, Chingyuan Tsai, Chun-I Wu
  • Publication number: 20240145641
    Abstract: A color conversion panel and a display device are provided. The color conversion panel includes an opaque substrate and a sapphire substrate. The opaque substrate includes a plurality of first pixel openings, a plurality of second pixel openings and a plurality of third pixel openings. The first pixel openings are filled with red quantum dot material, and the second pixel openings are filled with green quantum dot material. The sapphire substrate is on the opaque substrate. A first surface of the sapphire substrate that faces the opaque substrate has a plurality of first arc surfaces corresponding to the first pixel openings, a plurality of second arc surfaces corresponding to the second pixel openings, and a plurality of third arc surfaces corresponding to the third pixel openings.
    Type: Application
    Filed: December 15, 2022
    Publication date: May 2, 2024
    Applicant: Industrial Technology Research Institute
    Inventors: Kai-Ling Liang, Wei-Hung Kuo, Hui-Tang Shen, Chun-I Wu, Suh-Fang Lin
  • Publication number: 20240127767
    Abstract: A display device and a projector are provided. The display device includes a pixel light-emitting panel and multiple color conversion panels. The pixel light-emitting panel includes an N1 number of light-emitting pixel units distributed in an array, and the light-emitting pixel units are driven to emit light through a driver. A first color conversion panel includes an N2 number of first color pixels and an N3 number of first transparent pixels. The first color pixels and the first transparent pixels are disposed relative to the light-emitting pixel units. A second color conversion panel includes an N4 number of second color pixels and an N5 number of second transparent pixels. The second color pixels and the second transparent pixels are disposed relative to the light-emitting pixel units. The lights generated by at least part of the light-emitting pixel units sequentially pass through the first color pixels and the second transparent pixels to achieve the color conversion.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 18, 2024
    Applicant: Industrial Technology Research Institute
    Inventors: Hui-Tang Shen, Wei-Hung Kuo, Kai-Ling Liang, Chun-I Wu, Yu-Hsiang Chang
  • Patent number: 11942568
    Abstract: A light-emitting diode device includes an epitaxial structure that contains first-type and second-type semiconductor units and an active layer interposed therebetween, a light transmittable dielectric element that is disposed on the first-type semiconductor unit opposite to the active layer and is formed with a first through hole, an adhesive layer that is disposed on the dielectric element and is formed with a second through hole corresponding in position to the first through hole, and a metal contact element that is disposed on the adhesive layer. The adhesive layer has a thickness of at most one fifth of that of the dielectric element. The metal contact element extends into the first and second through holes, and electrically contacts the first-type semiconductor unit. A method for manufacturing the LED device is also disclosed.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 26, 2024
    Assignee: XIAMEN SAN'AN OPTOELECTRONICS CO., LTD.
    Inventors: Dongyan Zhang, Yuehua Jia, Cheng Meng, Jing Wang, Chun-I Wu, Duxiang Wang
  • Publication number: 20240088227
    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The method includes forming first and second nanostructured channel regions in first and second nanostructured layers, respectively, and forming first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The forming the first and second GAA structures includes selectively forming an Al-based n-type work function metal layer and a Si-based capping layer on the first nanostructured channel regions, depositing a bi-layer of Al-free p-type work function metal layers on the first and second nanostructured channel regions, depositing a fluorine blocking layer on the bi-layer of Al-free p-type work function layers, and depositing a gate metal fill layer on the fluorine blocking layer.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Chun-I WU, Huang-Lin CHAO
  • Patent number: 11862681
    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The method includes forming first and second nanostructured channel regions in first and second nanostructured layers, respectively, and forming first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The forming the first and second GAA structures includes selectively forming an Al-based n-type work function metal layer and a Si-based capping layer on the first nanostructured channel regions, depositing a bi-layer of Al-free p-type work function metal layers on the first and second nanostructured channel regions, depositing a fluorine blocking layer on the bi-layer of Al-free p-type work function layers, and depositing a gate metal fill layer on the fluorine blocking layer.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Chun-I Wu, Huang-Lin Chao
  • Publication number: 20230411520
    Abstract: A semiconductor structure includes a plurality of semiconductor devices, each of which includes at least one channel layer, at least one interfacial layer, a gate dielectric layer, a gate electrode, and dipole elements. The at least one interfacial layer is disposed on the at least one channel layer. The gate dielectric layer is disposed over the at least one interfacial layer such that the at least one channel layer is separated from the gate dielectric layer through the at least one interfacial layer. The gate electrode is disposed on the gate dielectric layer. The dipole elements are present in the interfacial layer of at least one of the semiconductor devices in a predetermined amount such that the at least one of the semiconductor devices has a tunability of threshold voltage from that of the other of the semiconductor devices. Methods for manufacturing the semiconductor structure are also disclosed.
    Type: Application
    Filed: May 23, 2022
    Publication date: December 21, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shen-Yang LEE, Chung-Liang CHENG, Hsiang-Pi CHANG, Chun-I WU, Huang-Lin CHAO, Pinyen LIN
  • Publication number: 20230246080
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate. The gate stack includes a gate dielectric layer, a first metal-containing layer, a silicon-containing layer, a second metal-containing layer, and a gate electrode layer sequentially stacked over the substrate, the silicon-containing layer is between the first metal-containing layer and the second metal-containing layer, and the silicon-containing layer includes an oxide material.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Wen TSAU, Chun-I WU, Ziwei FANG, Huang-Lin CHAO, I-Ming CHANG, Chung-Liang CHENG, Chih-Cheng LIN
  • Patent number: 11664606
    Abstract: An antenna structure includes a patch antenna including two opposite edges, a microstrip line connected to the patch antenna, two first radiation assemblies respectively disposed on two sides of the patch antenna, two second radiation assemblies disposed under the two first radiation assemblies, a liquid crystal layer disposed between a first plane and a second plane, and a ground plane disposed under the two second radiation assemblies. The patch antenna, the microstrip line, and the two first radiation assemblies are located on the first plane, and each of the first radiation assemblies includes multiple separated first conductors. The two second radiation assemblies are located on the second plane, and each of the second radiation assemblies includes multiple separated second conductors. A projection of the two second radiation assemblies on the first plane, the two first radiation assemblies, and the two edges of the patch antenna collectively form two loops.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: May 30, 2023
    Assignee: Au Optronics Corporation
    Inventors: Shih-Yuan Chen, Hsiu-Ping Liao, Chun-I Wu, Yi-Chen Hsieh, Yi-Hsiang Lai, Ching-Huan Lin, Chuang Yueh Lin
  • Publication number: 20230117569
    Abstract: A method for measuring a physiological signal includes following steps: detecting a first physiological signal of a target; receiving the first physiological signal to generate a first signal and a second signal by a radar sensor; selecting one of the first signal and the second signal to generate a plurality of original signals, which a phase difference is formed between the first signal and the second signal; and capturing a respiration signal and a heartbeat signal according to the plurality of original signals.
    Type: Application
    Filed: June 20, 2022
    Publication date: April 20, 2023
    Inventors: Shu-Hua CHANG, Wei-Mei CHEN, Chao-Hsiung TSENG, Ching-Huan LIN, Yi-Hsiang LAI, Chuang-Yueh LIN, Chun-I WU, Yi-Chen HSIEH
  • Patent number: 11626493
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate. The gate stack includes a gate dielectric layer, a first metal-containing layer, a silicon-containing layer, a second metal-containing layer, and a gate electrode layer sequentially stacked over the substrate. The silicon-containing layer is between the first metal-containing layer and the second metal-containing layer, and the silicon-containing layer is thinner than the second metal-containing layer.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: April 11, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Wen Tsau, Chun-I Wu, Ziwei Fang, Huang-Lin Chao, I-Ming Chang, Chung-Liang Cheng, Chih-Cheng Lin