Patents by Inventor Chun Wen

Chun Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269926
    Abstract: A method includes placing a wafer in a wafer holder, placing the wafer holder on a loadport of a deposition tool, connecting the wafer holder to a front-end interface unit of the deposition tool, purging the front-end interface unit with nitrogen, and depositing a metal layer on the wafer in the deposition tool.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ying Liu, Chun-Wen Nieh, Yu-Sheng Wang, Yu-Ting Lin, Wei-Yu Chen
  • Publication number: 20190112183
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure has a plurality of interconnect layers disposed within a dielectric structure over a substrate. A passivation layer is over the dielectric structure. A sensing electrode and a bonding electrode have bottom surfaces directly contacting the passivation layer. A microelectromechanical systems (MEMS) substrate is vertically separated from the sensing electrode. The bonding electrode is electrically connected to the MEMs substrate and to one or more of the plurality of interconnect layers. An electrode extension via is configured to electrically connect the sensing electrode to one or more of the plurality of interconnect layers.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng, Jung-Huei Peng
  • Publication number: 20190101531
    Abstract: The present disclosure provides biochips and methods of fabricating biochips. The method includes combining three portions: a transparent substrate, a first substrate with microfluidic channels therein, and a second substrate. Through-holes for inlet and outlet are formed in the transparent substrate or the second substrate. Various non-organic landings with support medium for bio-materials to attach are formed on the first substrate and the second substrate before they are combined. In other embodiments, the microfluidic channel is formed of an adhesion layer between a transparent substrate and a second substrate with landings on the substrates.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 4, 2019
    Inventors: Chia-Hua Chu, Allen Timothy Chang, Ching-Ray Chen, Yi-Hsien Chang, Yi-Shao Liu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20190097012
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a semiconductor substrate including a conductive region made of silicon, germanium or a combination thereof. The method also includes forming an insulating layer over the semiconductor substrate and forming an opening in the insulating layer to expose the conductive region. The method also includes performing a deposition process to form a metal layer over a sidewall and a bottom of the opening, so that a metal silicide or germanide layer is formed on the exposed conductive region by the deposition process. The method also includes performing a first in-situ etching process to etch at least a portion of the metal layer and forming a fill metal material layer in the opening.
    Type: Application
    Filed: April 27, 2018
    Publication date: March 28, 2019
    Inventors: Min-Hsiu HUNG, Yi-Hsiang CHAO, Kuan-Yu YEH, Kan-Ju LIN, Chun-Wen NIEH, Huang-Yi HUANG, Chih-Wei CHANG, Ching-Hwanq SU
  • Publication number: 20190086970
    Abstract: A dual-axis hinge assembly including a first rotating shaft, a second rotating shaft, torque components, a rotating shaft sleeve, a first bracket, a second bracket, and two bracket sleeves is provided. The second rotating shaft is disposed side-by-side to the first rotating shaft. The torque components are disposed at the first rotating shaft and the second rotating shaft. The rotating shaft sleeve covers the first rotating shaft, the second rotating shaft, and the torque components. The first bracket is connected to the first rotating shaft. The second bracket is connected to the second rotating shaft. The two bracket sleeves are respectively coaxial with the first rotating shaft and the second rotating shaft and respectively cover the first bracket and the second bracket. The two bracket sleeves and the rotating shaft sleeve are sleeved together. The invention further provides a plurality of electronic devices.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 21, 2019
    Applicant: COMPAL ELECTRONICS, INC.
    Inventors: Hsin-Chieh Fang, Wang-Hung Yeh, Shu-Hung Lin, Chun-Wen Wang
  • Publication number: 20190062151
    Abstract: A semiconductor device includes a first substrate, a second substrate bonded to the first substrate from a first surface of the second substrate, a third substrate bonded to the second substrate from a second surface of the second substrate, a cavity defined by the first substrate, the second substrate and the third substrate; and a viewer window provided in the third substrate and aligned with the cavity; wherein the inside of the cavity is observed through the viewer window.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Inventors: CHUN-WEN CHENG, CHI-HANG CHIN, JUNG-HUEI PENG, CHIA-HUA CHU, SHANG-YING TSAI
  • Patent number: 10216683
    Abstract: A multimedia communication apparatus, suitable for a first multimedia apparatus, is adapted to transmit or receive multimedia data and is electrically connectable to a standard connector. The standard connector may be non-reversibly or reversibly connected to a plug of a standard cable, and includes a plurality of the pins. The pins include multiple differential signal pins serving as multiple multimedia channels, a power pin serving as a power line, a first polarity pin, a first data pin and a ground pin. The multimedia communication apparatus includes a control logic and a multimedia signal processor. The multimedia signal processor transmits or receives multimedia data to/from a second multimedia apparatus through the multimedia channels, and further power handshakes or exchanges information with the second multimedia apparatus. The information is for controlling a multiplexer to switch the multimedia channels.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: February 26, 2019
    Assignee: MSTAR SEMICONDUCTOR, INC.
    Inventor: Chun-Wen Yeh
  • Publication number: 20190055120
    Abstract: An integrated circuit (IC) with an integrated microelectromechanical systems (MEMS) structure is provided. In some embodiments, the IC comprises a semiconductor substrate, a back-end-of-line (BEOL) interconnect structure, the integrated MEMS structure, and a cavity. The BEOL interconnect structure is over the semiconductor substrate, and comprises wiring layers stacked in a dielectric region. Further, an upper surface of the BEOL interconnect structure is planar or substantially planar. The integrated MEMS structure overlies and directly contacts the upper surface of the BEOL interconnect structure, and comprises an electrode layer. The cavity is under the upper surface of the BEOL interconnect structure, between the MEMS structure and the BEOL interconnect structure.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 21, 2019
    Inventors: Chun-Wen Cheng, Chia-Hua Chu
  • Patent number: 10202278
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a cavity disposed in a substrate and enclosed by a first surface and a second surface opposite to the first surface. The semiconductor structure also includes a first electrode pair having a first electrode on the first surface and a second electrode on the second surface. The first electrode pair is configured to measure a first spacing between the first surface and the second surface. The semiconductor structure further includes a second electrode pair having a third electrode on the first surface and a fourth electrode on the second surface. The second electrode pair is configured to measure a second spacing between the first surface and the second surface.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: February 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jung-Huei Peng, Yi-Chien Wu, Yu-Chia Liu, Chun-Wen Cheng
  • Patent number: 10184912
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: January 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Patent number: 10179399
    Abstract: The present disclosure provides a portable power tool. The power tool includes a tool body, a tool assembly and a gas pressure detection assembly. The tool assembly includes a tool bit furnished detachably in an end of the tool body. The gas pressure detection assembly is furnished detachably in another end of the tool body. The gas pressure detection assembly is communicatively coupled to the tool body.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 15, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Hsien Tien, Chan-Ru Chang, Chun-Wen Tang
  • Publication number: 20180374861
    Abstract: Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 27, 2018
    Inventors: Huang-Chun Wen, Richard Allen Bailey, Antonio Guillemo Acosta, John A. Rodriguez, Scott Robert Summerfelt, Kemal Tamer San
  • Patent number: 10160640
    Abstract: A method for forming a micro-electro mechanical system (MEMS) device is provided. The method includes bonding a semiconductor substrate with a carrier substrate through a dielectric layer and patterning the semiconductor substrate into multiple elements. The method also includes partially removing the dielectric layer to release some of the elements such that the released elements become one (or more) first movable element and one (or more) second movable element. The method further includes bonding a cap substrate with the semiconductor substrate to form a first closed chamber containing the first movable element and a second closed chamber containing the second movable element. In addition, the method includes opening the second closed chamber and sealing the second closed chamber after vacuumizing the second closed chamber such that the second closed chamber has a reduced pressure smaller than that of the first closed chamber.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu
  • Patent number: 10160633
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a first side bonded on the carrier, a moving element over a bottom electrode, wherein the bottom electrode is formed of polysilicon and a second side having a plurality of bonding pads and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode and the first moving element is between the top electrode and the bottom electrode.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Patent number: 10160638
    Abstract: A semiconductor structure may include a first device having first surface with a first bonding layer formed thereon and a second device having a first surface with a second bonding layer formed thereon. The first bonding layer may provide an electrically conductive path to at least one electrical device in the first device. The second bonding layer may provide an electrically conductive path to at least one electrical device in the second device. One of the first or the second devices may include MEMS electrical devices. The first and/or the second bonding layers may be formed of a getter material, which may provide absorption for outgassing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Cheng Chu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh, Lan-Lin Chao, Chun-Wen Cheng
  • Patent number: 10160639
    Abstract: The present disclosure relates to a semiconductor structure for a MEMS device. In some embodiments, the structure includes an interlayer dielectric (ILD) region positioned over a substrate. Further the structure includes an inter-metal dielectric region. The IMD region includes a passivation layer overlying a stacked structure. The stacked structure includes dielectric layers and etch stop layers that are stacked in an alternating fashion. Metal wire layers are disposed within the stacked structure of the IMD region. The structure also includes a sensing electrode electrically connected to the IMD region with an electrode extension via. The structure includes a MEMS substrate comprising a MEMS device having a soft mechanical structure positioned adjacent to the sensing electrode.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng, Jung-Huei Peng
  • Patent number: 10155655
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a shielding layer on the carrier and coupled to ground, a plurality of vias coupled between the shielding layer and a bottom electrode of the MEMS substrate and a moving element over the bottom electrode and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode, and wherein the moving element is between the top electrode and the bottom electrode.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Patent number: 10155659
    Abstract: A vacuum sealed MEMS and CMOS package and a process for making the same may include a capping wafer having a surface with a plurality of first cavities, a first device having a first surface with a second plurality of second cavities, a hermetic seal between the first surface of the first device and the surface of the capping wafer, and a second device having a first surface bonded to a second surface of the first device. The second device is a CMOS device with conductive through vias connecting the first device to a second surface of the second device, and conductive bumps on the second surface of the second device. Conductive bumps connect to the conductive through vias and wherein a plurality of conductive bumps connect to the second device. The hermetic seal forms a plurality of micro chambers between the capping wafer and the first device.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Yi-Chuan Teng, Hung-Chia Tsai, Chia-Hua Chu
  • Patent number: D837729
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 8, 2019
    Assignee: Guangdong Aiko Solar Energy Technology Co., Ltd.
    Inventors: Jiebin Fang, Kang-Cheng Lin, Chun-Wen Lai, Ta-Neng Ho, Gang Chen
  • Patent number: D846490
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 23, 2019
    Assignees: Guangdong Aiko Solar Energy Technology Co., Ltd., Zhejiang Aiko Solar Energy Technology Co., Ltd.
    Inventors: Jiebin Fang, Kang-Cheng Lin, Chun-Wen Lai, Ta-Neng Ho, Gang Chen