Patents by Inventor Chun-Ying Lin

Chun-Ying Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7851262
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. A molding compound is formed to encapsulate the patterned conductive layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7851270
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7851896
    Abstract: A Quad Flat Non-leaded (QFN) chip package including a patterned conductive layer, a first solder resist layer, a chip, a plurality of bonding wires and a molding compound is provided. The patterned conductive layer has a first surface and a second surface opposite to each other. The first solder resist layer is disposed on the first surface, wherein a part of the first surface is exposed by the first solder resist layer. The chip is disposed on the first solder resist layer, wherein the first solder resist layer is between the patterned conductive layer and the chip. The bonding wires are electrically connected to the chip and the patterned conductive layer exposed by the first solder resist layer. The molding compound encapsulates the pattern conductive layer, the first solder resist layer, the chip and the bonding wires.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin, Shih-Wen Chou
  • Patent number: 7842550
    Abstract: A method of fabricating a quad flat non-leaded package includes first forming a patterned conductive layer on a sacrificial layer. The patterned conductive layer includes a number of lead sets. A number of chips are attached to the sacrificial layer. Each of the chips is surrounded by one of the lead sets. Each of the chips is electrically connected to one of the lead sets, and a molding compound is formed on the sacrificial layer to cover the patterned conductive layer and the chips. The molding compound and the patterned conductive layer are then cut and singulated, and the sacrificial layer is pre-cut to form a number of recesses on the sacrificial layer. After the molding compound and the patterned conductive layer are cut and singulated and the sacrificial layer is pre-cut, the sacrificial layer is removed.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: November 30, 2010
    Assignee: ChipMOS Technologies Inc.
    Inventors: Chun-Ying Lin, Geng-Shin Shen, Po-Kai Hou
  • Patent number: 7803667
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A part of the conductive layer uncovered by the patterned solder resist layer is removed so as to form a patterned conductive layer. Chips are bonded onto the patterned conductive layer such that the patterned solder resist layer and the chips are at the same side of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed and the molding compound and the patterned conductive layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 28, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7803666
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer are between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 28, 2010
    Assignees: ChipMOS Technologies INc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7795079
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having a plurality of recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer is between the chips and the conductive layer. The chips are electrically connected to the conductive layer by a plurality of bonding wires. At least one molding compound is formed to encapsulate the conductive layer, the patterned solder resist layer, the chips and the bonding wires. A part of the conductive layer exposed by the patterned solder resist layer is removed so as to form a patterned conductive layer. Then, the molding compound and the patterned conductive layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 14, 2010
    Assignees: ChipMoS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7790514
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a first patterned solder resist layer on the patterned conductive layer are provided. A second patterned solder resist layer is formed on the patterned conductive layer such that the first patterned solder resist layer and the second patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. Chips are bonded onto the first patterned solder resist layer such that the first patterned solder resist layer is between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings. At least one molding compound is formed and the molding compound, the first patterned solder resist layer and the second patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 7, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Publication number: 20100155929
    Abstract: A chip stacked package structure and applications are provided, wherein the chip stacked package structure comprises a substrate, a first chip, a patterned circuit layer and a second chip. The substrate has a first surface and an opposite second surface. The first chip with a first active area and an opposite first rear surface is electrically connected to first surface of substrate by a flip chip bonding process. The patterned circuit layer set on the dielectric layer is electrically connected to the substrate via a bonding wire. The second chip set on the patterned circuit layer has a second active area and a plurality of second pads formed on the second active area, wherein the second bonding pad is electrically connected to the patterned circuit layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: June 24, 2010
    Applicant: CHIPMOS TECHNOLOGY INC.
    Inventors: Chun-Ying Lin, Yu-Tang Pan, Shih-Wen Chou, Geng-Shin Shen
  • Publication number: 20100120201
    Abstract: A method of fabricating a quad flat non-leaded package includes first forming a patterned conductive layer on a sacrificial layer. The patterned conductive layer includes a number of lead sets. A number of chips are attached to the sacrificial layer. Each of the chips is surrounded by one of the lead sets. Each of the chips is electrically connected to one of the lead sets, and a molding compound is formed on the sacrificial layer to cover the patterned conductive layer and the chips. The molding compound and the patterned conductive layer are then cut and singulated, and the sacrificial layer is pre-cut to form a number of recesses on the sacrificial layer. After the molding compound and the patterned conductive layer are cut and singulated and the sacrificial layer is pre-cut, the sacrificial layer is removed.
    Type: Application
    Filed: December 11, 2008
    Publication date: May 13, 2010
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Chun-Ying Lin, Geng-Shin Shen, Po-Kai Hou
  • Patent number: 7696629
    Abstract: A chip stacked package structure and applications are provided, wherein the chip stacked package structure comprises a substrate, a first chip, a patterned circuit layer and a second chip. The substrate has a first surface and an opposite second surface. The first chip with a first active area and an opposite first rear surface is electrically connected to first surface of substrate by a flip chip bonding process. The patterned circuit layer set on the dielectric layer is electrically connected to the substrate via a bonding wire. The second chip set on the patterned circuit layer has a second active area and a plurality of second pads formed on the second active area, wherein the second bonding pad is electrically connected to the patterned circuit layer.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: April 13, 2010
    Assignee: Chipmos Technology Inc.
    Inventors: Chun-Ying Lin, Yu-Tang Pan, Shih-Wen Chou, Geng-Shin Shen
  • Publication number: 20100041768
    Abstract: The present invention is related to a composition and method of adipose cell differentiation inhibition.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Applicants: NATIONAL YANG-MING UNIVERSITY, YANGSON BIOTECHNOLOGY CO., LTD.
    Inventors: MENG-HWAN LEE, JUNG-WEI TSAI, YUN-YU CHEN, YING-CHIEH TSAI, CHUN-YING LIN
  • Patent number: 7642137
    Abstract: A chip package including a thermal enhanced plate, contacts around the thermal enhanced plate and electrically insulated from the thermal enhanced plate, a film-like circuit layer disposed on the contacts and the thermal enhanced plate, a conductive adhesive layer, a first molding, and at least one chip disposed on the film-like circuit layer is provided. The conductive adhesive layer is disposed between the contacts and the film-like circuit layer electrically connected to the contacts through the conductive adhesive layer. The chip has a back surface, an active surface and many bumps disposed thereon, and the chip is electrically connected to the film-like circuit layer via the bumps. The first molding at least encapsulates a portion of the thermal enhanced plate, the conductive adhesive layer, parts of the contacts and at least a portion of the film-like circuit layer. Therefore, heat dissipation efficiency of the light emitting chip package is improved.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: January 5, 2010
    Assignee: ChipMOS Technologies Inc.
    Inventors: Chun-Ying Lin, Ya-Chi Chen, Yu-Ren Chen, I-Hsin Mao
  • Publication number: 20090321918
    Abstract: A chip package includes a thermal enhanced plate, contacts around the thermal enhanced plate and electrically insulated from the thermal enhanced plate, a film-like circuit layer disposed on the contacts and the thermal enhanced plate, a conductive adhesive layer, a first molding, and at least one chip disposed on the film-like circuit layer. The conductive adhesive layer is disposed between the contacts and the film-like circuit layer electrically connected to the contacts through the conductive adhesive layer. The chip has a back surface, an active surface and many bumps disposed thereon, and the chip is electrically connected to the film-like circuit layer via the bumps. The first molding at least encapsulates a portion of the thermal enhanced plate, the conductive adhesive layer, parts of the contacts and at least a portion of the film-like circuit layer. Therefore, heat dissipation efficiency of the light emitting chip package is improved.
    Type: Application
    Filed: July 21, 2009
    Publication date: December 31, 2009
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Chun-Ying Lin, Ya-Chi Chen, Yu-Ren Chen, I-Hsin Mao
  • Publication number: 20090189296
    Abstract: A manufacturing method for a Flip Chip Quad Flat Non-leaded package structure is provided. A lead frame having a plurality of leads is provided at first in the manufacturing method. A dielectric layer is formed on the lead frame and exposes a top surface and a bottom surface of the leads. A redistribution layer including a plurality of pads and a plurality of conductive lines connected the pads and the top surface of the leads is formed on the dielectric layer. A solder resist layer is formed to cover the redistribution layer, the dielectric layer and the leads, and expose the surface of the pads. An adhesive layer is formed on the solder resist layer. A chip having a plurality of bumps is provided. The chip is adhered on the solder resist layer with the adhesive layer and each bump is electrically connected with one of the pads.
    Type: Application
    Filed: November 20, 2008
    Publication date: July 30, 2009
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Cheng-Ting Wu, Hung-Tsun Lin, Yu-Ren Chen, Chun-Ying Lin
  • Publication number: 20090127684
    Abstract: A leadframe for a leadless package comprises a plurality of package areas, a plurality of slots, an insulating layer, and a tape (film). Each package area comprises a plurality of package units, each of which comprises a die pad and a plurality of leads surrounding the die pad. The plurality of slots are disposed around each of the package units. The insulating layer is filled in a plurality of slots between the package areas. The tape (film) fixes the plurality of package areas, the plurality of connection portions, the plurality of die pads, and the plurality of leads in place.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 21, 2009
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: HENG CHANG KUO, PO KAI HOU, CHUN YING LIN
  • Publication number: 20090108424
    Abstract: A leadframe for a leadless package comprises a plurality of package areas, a plurality of first slots, a plurality of first side rails, a plurality of second side rails, and tape. Each of the package areas comprises a plurality of package units, each of which comprises a die pad and a plurality of leads surrounding the die pad. The plurality of first side rails and the plurality of second side rails are connected and surround the plurality of the package areas. The tape fixes the plurality of package areas, the plurality of first side rails, the plurality of second side rails, the die pads, and the plurality of leads in place.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 30, 2009
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: HENG CHANG KUO, PO KAI HOU, CHUN YING LIN
  • Publication number: 20090108419
    Abstract: A leadframe for a leadless package comprises a plurality of package areas, a plurality of slots, a plurality of connection portions, a plurality of openings, and a tape (film). Each package area comprises a plurality of package units, each of which comprises a die pad and a plurality of leads surrounding the die pad. The plurality of slots are disposed around each of the package units. The plurality of connection portions connect the plurality of package areas. The plurality of openings are disposed on the plurality of connection portions, and are aligned with some of the plurality of slots. The tape (film) fixes the plurality of package areas, the plurality of connection portions, the plurality of die pads, and the plurality of leads in place.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 30, 2009
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: HENG CHANG KUO, PO KAI HOU, CHUN YING LIN
  • Patent number: 7514106
    Abstract: A method for treating/relief of women's menstruation pain. The pain is reduced or relieved by externally administering an effective amount of an essential oil obtained from anthopogon.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: April 7, 2009
    Assignee: Yangsen Biotechnology Co., Ltd.
    Inventors: Chia-Li Wei, Meng-Hwan Lee, Chun-Ying Lin, Jay Hua, Ying-Chieh Tsai
  • Publication number: 20090064494
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer are between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Application
    Filed: November 13, 2008
    Publication date: March 12, 2009
    Applicants: CHIPMOS TECHNOLOGIES INC., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Geng-Shin Shen, Chun-Ying Lin