Patents by Inventor Chung Hsun Lin

Chung Hsun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120304
    Abstract: The disclosure provides an electronic device and a manufacturing method thereof. The electronic device includes a package structure, a circuit structure, a bonding structure and an external element. The circuit structure is disposed on the package structure and is electrically connected to the package structure. The circuit structure has a recess. The bonding structure includes a first bonding pad and a second bonding pad. The second bonding pad is disposed in the recess, and the second bonding pad is disposed on the first bonding pad. The bonding structure is disposed between the circuit structure and the external element. The external element is electrically connected to the circuit structure through the bonding structure. A width of the first bonding pad is smaller than a width of the second bonding pad.
    Type: Application
    Filed: November 24, 2022
    Publication date: April 11, 2024
    Applicant: Innolux Corporation
    Inventors: Tzu-Sheng Wu, Haw-Kuen Liu, Chung-Jyh Lin, Cheng-Chi Wang, Wen-Hsiang Liao, Te-Hsun Lin
  • Patent number: 11942448
    Abstract: An integrated circuit and method of making an integrated circuit is provided. The integrated circuit includes an electrically conductive pad having a generally planar top surface that includes a cavity having a bottom surface and sidewalls extending from the bottom surface of the cavity to the top surface of the pad. An electronic device is attached to the top surface of the electrically conductive pad. A wire bond is attached from the electronic device to the bottom surface of the cavity. A molding compound encapsulates the electronic device.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: March 26, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bo-Hsun Pan, Hung-Yu Chou, Chung-Hao Lin, Yuh-Harng Chien
  • Publication number: 20240092662
    Abstract: A method for removing a heavy metal from water includes subjecting a microbial solution containing a liquid culture of a urease-producing bacterial strain and a reaction solution containing a manganese compound and urea to a microbial-induced precipitation reaction, so as to obtain biomineralized manganese carbonate (MnCO3) particles, admixing the biomineralized MnCO3 particles with water containing a heavy metal, so that the biomineralized MnCO3 particles adsorb the heavy metal in the water to form a precipitate, and removing the precipitate from the water.
    Type: Application
    Filed: February 9, 2023
    Publication date: March 21, 2024
    Inventors: Chien-Yen CHEN, Yi-Hsun HUANG, Pin-Yun LIN, Anggraeni Kumala DEWI, Koyeli DAS, Uttara SUKUL, Tsung-Hsien CHEN, Raju Kumar SHARMA, Cheng-Kang LU, Chung-Ming LU
  • Publication number: 20240088132
    Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar
  • Patent number: 11923396
    Abstract: An integrated circuit includes a photodetector. The photodetector includes one or more dielectric structures positioned in a trench in a semiconductor substrate. The photodetector includes a photosensitive material positioned in the trench and covering the one or more dielectric structures. A dielectric layer covers the photosensitive material. The photosensitive material has an index of refraction that is greater than the indices of refraction of the dielectric structures and the dielectric layer.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wei Hsu, Tsai-Hao Hung, Chung-Yu Lin, Ying-Hsun Chen
  • Patent number: 11908856
    Abstract: Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20240055497
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI, Kalyan KOLLURU, Nathan JACK, Nicholas THOMSON, Ayan KAR, Benjamin ORR
  • Publication number: 20240038889
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Ayan KAR, Nicholas THOMSON, Benjamin ORR, Nathan JACK, Kalyan KOLLURU, Tahir GHANI
  • Patent number: 11869987
    Abstract: Gate-all-around integrated circuit structures including varactors are described. For example, an integrated circuit structure includes a varactor structure on a semiconductor substrate. The varactor structure includes a plurality of discrete vertical arrangements of horizontal nanowires. A plurality of gate stacks is over and surrounding corresponding ones of the plurality of discrete vertical arrangements of horizontal nanowires. The integrated circuit structure also includes a tap structure adjacent to the varactor structure on the semiconductor substrate. The tap structure includes a plurality of merged vertical arrangements of horizontal nanowires. A plurality of semiconductor structures is over and surrounding corresponding ones of the plurality of merged vertical arrangements of horizontal nanowires.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Ayan Kar, Saurabh Morarka, Carlos Nieva-Lozano, Kalyan Kolluru, Biswajeet Guha, Chung-Hsun Lin, Brian Greene, Tahir Ghani
  • Publication number: 20240006504
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20230420443
    Abstract: Integrated circuit (IC) devices with diodes formed in a subfin between a support structure of an IC device and one or more nanoribbon stacks are disclosed. To alleviate challenges of limited semiconductor cross-section provided by the subfin, etch depths in the subfin (i.e., depths of recesses in the subfin formed as a part of forming the diodes) are selectively optimized and varied. Deeper recesses are made in subfin portions at which diode terminals (e.g., anodes and cathodes) are formed, to increase the semiconductor cross-section in those portions, thus providing improved subfin contacts. Shallower recesses (or no recesses) are made in subfin portion between the diode terminals, to increase subfin retention. Thus, subfin diodes may be provided in a manner that enables improved diode conductance and/or improved current carrying capabilities while advantageously using substantially the same etch processes as those used for forming nanoribbon-based transistors elsewhere in the IC device.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Benjamin John Orr, Chu-Hsin Liang, Biswajeet Guha, Saptarshi Mandal, Brian Greene, Sameer Jayanta Joglekar, Chung-Hsun Lin, Mauro J. Kobrinsky
  • Patent number: 11837641
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Patent number: 11824116
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Ayan Kar, Nicholas Thomson, Benjamin Orr, Nathan Jack, Kalyan Kolluru, Tahir Ghani
  • Patent number: 11799009
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
  • Publication number: 20230317594
    Abstract: Embodiments disclosed herein include a semiconductor device. In an embodiment, the semiconductor device comprises a substrate and a transistor over the substrate. In an embodiment, the transistor comprises a source, a gate, and a drain. In an embodiment, the semiconductor device further comprises a first metal layer above the transistor, where the first metal layer comprises, a source metal coupled to the source, a drain metal coupled to the drain, and a gate metal coupled to the gate. In an embodiment, the source metal, the drain metal, and the gate metal are parallel conductive lines. In an embodiment, a backside via passes through the substrate, and a contact metal in the first metal layer is coupled to the backside via. In an embodiment, the contact metal is oriented orthogonal to the source metal.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Tao CHU, Minwoo JANG, Aurelia WANG, Conor P. PULS, Lin HU, Jaladhi MEHTA, Brian GREENE, Chung-Hsun LIN, Walid M. HAFEZ, Paul PACKAN
  • Publication number: 20230307449
    Abstract: An integrated circuit includes a first source region, a first drain region, a first fin having (i) a first upper region laterally between the first source region and the first drain region and (ii) a first lower region below the first upper region, and a first gate structure on at least top and side surfaces of the first upper region. The integrated circuit further includes a second source region, a second drain region, a second fin having (i) a second upper region laterally between the second source region and the second drain region and (ii) a second lower region below the second upper region, and a second gate structure on at least top and side surfaces of the second upper region. In an example, a first vertical height of the first lower region is different from a second vertical height of the second lower region by at least 2 nanometers (nm).
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Applicant: Intel Corporation
    Inventors: Tao Chu, Minwoo Jang, Aurelia Chi Wang, Conor Puls, Brian Greene, Tofizur Rahman, Lin Hu, Jaladhi Mehta, Chung-Hsun Lin, Walid Hafez
  • Publication number: 20230071699
    Abstract: A transistor structure includes a channel region including first sidewall. A gate electrode includes a first layer having a first portion adjacent to the first sidewall and a second portion adjacent to a gate electrode boundary sidewall. The gate electrode includes a second layer between the first and second portions of the first layer. The first layer has a first composition associated with a first work function material, and has a first lateral thickness from the first sidewall. The second layer has a second composition associated with a second work function material. Depending one a second lateral thickness of the second layer, the second layer may modulate a threshold voltage (VT) of the transistor structure by more or less. In some embodiments, a ratio of the second lateral thickness to the first lateral thickness is less than three.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Andrew Smith, Brian Greene, Seonghyun Paik, Omair Saadat, Chung-Hsun Lin, Tahir Ghani
  • Publication number: 20220415880
    Abstract: Substrate-less diode, bipolar and feedthrough integrated circuit structures, and methods of fabricating substrate-less diode, bipolar and feedthrough integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a semiconductor structure. A plurality of gate structures is over the semiconductor structure. A plurality of P-type epitaxial structures is over the semiconductor structure. A plurality of N-type epitaxial structures is over the semiconductor structure. One or more open locations is between corresponding ones of the plurality of gate structures. A backside contact is connected directly to one of the pluralities of P-type and N-type epitaxial structures.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Ayan KAR, Kalyan KOLLURU, Nicholas THOMSON, Rui MA, Benjamin ORR, Nathan JACK, Mauro KOBRINSKY, Patrick MORROW, Chung-Hsun LIN
  • Publication number: 20220416027
    Abstract: Gate-all-around integrated circuit structures having nanoribbon sub-fin isolation by backside Si substrate removal etch selective to source and drain epitaxy, are described. For example, an integrated circuit structure includes a plurality of horizontal nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of horizontal nanowires; and a doped nucleation layer at a base of the epitaxial source or drain structures adjacent to the sub-fin. Where the integrated circuit structure comprises an NMOS transistor, doped nucleation layer comprises a carbon-doped nucleation layer. Where the integrated circuit structure comprises a PMOS transistor, doped nucleation layer comprises a heavy boron-doped nucleation layer.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: William HSU, Biswajeet GUHA, Chung-Hsun LIN, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20220416022
    Abstract: Substrate-less nanowire-based lateral diode integrated circuit structures, and methods of fabricating substrate-less nanowire-based lateral diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a stack of nanowires. A plurality of P-type epitaxial structures is over the stack of nanowires. A plurality of N-type epitaxial structures is over the stack of nanowires. One or more gate structures is over the stack of nanowires. A semiconductor material is between and in contact with vertically adjacent ones of the stack of nanowires.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Nicholas THOMSON, Kalyan KOLLURU, Ayan KAR, Rui MA, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Lin HU, Chung-Hsun LIN, Sabih OMAR