Patents by Inventor Chung Hsun Lin

Chung Hsun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240178273
    Abstract: Integrated circuit structures having source or drain contacts with enhanced contact area, and methods of fabricating integrated circuit structures having source or drain contacts with enhanced contact area, are described. For example, an integrated circuit structure includes a plurality of horizontally stacked nanowires. A gate structure is over the plurality of horizontally stacked nanowires. An epitaxial source or drain structure is at an end of the plurality of horizontally stacked nanowires. A conductive contact structure is vertically over the epitaxial source or drain structure. The conductive contact structure has a lower portion extending over the top and along upper portions of sides of the epitaxial source or drain structure, and has an upper portion on the lower portion. The upper portion has a maximum lateral width less than a maximum lateral width of the lower portion.
    Type: Application
    Filed: November 30, 2022
    Publication date: May 30, 2024
    Inventors: Chiao-Ti HUANG, Tao CHU, Guowei XU, Chung-Hsun LIN, Brian Greene
  • Publication number: 20240145471
    Abstract: Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI, Kalyan KOLLURU, Nathan JACK, Nicholas THOMSON, Ayan KAR, Benjamin ORR
  • Publication number: 20240088132
    Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar
  • Patent number: 11908856
    Abstract: Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20240055497
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI, Kalyan KOLLURU, Nathan JACK, Nicholas THOMSON, Ayan KAR, Benjamin ORR
  • Publication number: 20240038889
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Ayan KAR, Nicholas THOMSON, Benjamin ORR, Nathan JACK, Kalyan KOLLURU, Tahir GHANI
  • Patent number: 11869987
    Abstract: Gate-all-around integrated circuit structures including varactors are described. For example, an integrated circuit structure includes a varactor structure on a semiconductor substrate. The varactor structure includes a plurality of discrete vertical arrangements of horizontal nanowires. A plurality of gate stacks is over and surrounding corresponding ones of the plurality of discrete vertical arrangements of horizontal nanowires. The integrated circuit structure also includes a tap structure adjacent to the varactor structure on the semiconductor substrate. The tap structure includes a plurality of merged vertical arrangements of horizontal nanowires. A plurality of semiconductor structures is over and surrounding corresponding ones of the plurality of merged vertical arrangements of horizontal nanowires.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Ayan Kar, Saurabh Morarka, Carlos Nieva-Lozano, Kalyan Kolluru, Biswajeet Guha, Chung-Hsun Lin, Brian Greene, Tahir Ghani
  • Publication number: 20240006504
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20230420443
    Abstract: Integrated circuit (IC) devices with diodes formed in a subfin between a support structure of an IC device and one or more nanoribbon stacks are disclosed. To alleviate challenges of limited semiconductor cross-section provided by the subfin, etch depths in the subfin (i.e., depths of recesses in the subfin formed as a part of forming the diodes) are selectively optimized and varied. Deeper recesses are made in subfin portions at which diode terminals (e.g., anodes and cathodes) are formed, to increase the semiconductor cross-section in those portions, thus providing improved subfin contacts. Shallower recesses (or no recesses) are made in subfin portion between the diode terminals, to increase subfin retention. Thus, subfin diodes may be provided in a manner that enables improved diode conductance and/or improved current carrying capabilities while advantageously using substantially the same etch processes as those used for forming nanoribbon-based transistors elsewhere in the IC device.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Nicholas A. Thomson, Ayan Kar, Kalyan C. Kolluru, Benjamin John Orr, Chu-Hsin Liang, Biswajeet Guha, Saptarshi Mandal, Brian Greene, Sameer Jayanta Joglekar, Chung-Hsun Lin, Mauro J. Kobrinsky
  • Patent number: 11837641
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Patent number: 11824116
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Ayan Kar, Nicholas Thomson, Benjamin Orr, Nathan Jack, Kalyan Kolluru, Tahir Ghani
  • Patent number: 11799009
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
  • Publication number: 20230317594
    Abstract: Embodiments disclosed herein include a semiconductor device. In an embodiment, the semiconductor device comprises a substrate and a transistor over the substrate. In an embodiment, the transistor comprises a source, a gate, and a drain. In an embodiment, the semiconductor device further comprises a first metal layer above the transistor, where the first metal layer comprises, a source metal coupled to the source, a drain metal coupled to the drain, and a gate metal coupled to the gate. In an embodiment, the source metal, the drain metal, and the gate metal are parallel conductive lines. In an embodiment, a backside via passes through the substrate, and a contact metal in the first metal layer is coupled to the backside via. In an embodiment, the contact metal is oriented orthogonal to the source metal.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Tao CHU, Minwoo JANG, Aurelia WANG, Conor P. PULS, Lin HU, Jaladhi MEHTA, Brian GREENE, Chung-Hsun LIN, Walid M. HAFEZ, Paul PACKAN
  • Publication number: 20230307449
    Abstract: An integrated circuit includes a first source region, a first drain region, a first fin having (i) a first upper region laterally between the first source region and the first drain region and (ii) a first lower region below the first upper region, and a first gate structure on at least top and side surfaces of the first upper region. The integrated circuit further includes a second source region, a second drain region, a second fin having (i) a second upper region laterally between the second source region and the second drain region and (ii) a second lower region below the second upper region, and a second gate structure on at least top and side surfaces of the second upper region. In an example, a first vertical height of the first lower region is different from a second vertical height of the second lower region by at least 2 nanometers (nm).
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Applicant: Intel Corporation
    Inventors: Tao Chu, Minwoo Jang, Aurelia Chi Wang, Conor Puls, Brian Greene, Tofizur Rahman, Lin Hu, Jaladhi Mehta, Chung-Hsun Lin, Walid Hafez
  • Publication number: 20230071699
    Abstract: A transistor structure includes a channel region including first sidewall. A gate electrode includes a first layer having a first portion adjacent to the first sidewall and a second portion adjacent to a gate electrode boundary sidewall. The gate electrode includes a second layer between the first and second portions of the first layer. The first layer has a first composition associated with a first work function material, and has a first lateral thickness from the first sidewall. The second layer has a second composition associated with a second work function material. Depending one a second lateral thickness of the second layer, the second layer may modulate a threshold voltage (VT) of the transistor structure by more or less. In some embodiments, a ratio of the second lateral thickness to the first lateral thickness is less than three.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Andrew Smith, Brian Greene, Seonghyun Paik, Omair Saadat, Chung-Hsun Lin, Tahir Ghani
  • Publication number: 20220415925
    Abstract: Substrate-less lateral diode integrated circuit structures, and methods of fabricating substrate-less lateral diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a fin or a stack of nanowires. A plurality of P-type epitaxial structures is over the fin or stack of nanowires. A plurality of N-type epitaxial structures is over the fin or stack of nanowires. One or more spacings are in locations over the fin or stack of nanowires, a corresponding one of the one or more spacings extending between neighboring ones of the plurality of P-type epitaxial structures and the plurality of N-type epitaxial structures.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Nicholas THOMSON, Kalyan KOLLURU, Ayan KAR, Rui MA, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Lin HU, Chung-Hsun LIN
  • Publication number: 20220416022
    Abstract: Substrate-less nanowire-based lateral diode integrated circuit structures, and methods of fabricating substrate-less nanowire-based lateral diode integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a stack of nanowires. A plurality of P-type epitaxial structures is over the stack of nanowires. A plurality of N-type epitaxial structures is over the stack of nanowires. One or more gate structures is over the stack of nanowires. A semiconductor material is between and in contact with vertically adjacent ones of the stack of nanowires.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Nicholas THOMSON, Kalyan KOLLURU, Ayan KAR, Rui MA, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Lin HU, Chung-Hsun LIN, Sabih OMAR
  • Publication number: 20220415880
    Abstract: Substrate-less diode, bipolar and feedthrough integrated circuit structures, and methods of fabricating substrate-less diode, bipolar and feedthrough integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a semiconductor structure. A plurality of gate structures is over the semiconductor structure. A plurality of P-type epitaxial structures is over the semiconductor structure. A plurality of N-type epitaxial structures is over the semiconductor structure. One or more open locations is between corresponding ones of the plurality of gate structures. A backside contact is connected directly to one of the pluralities of P-type and N-type epitaxial structures.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Ayan KAR, Kalyan KOLLURU, Nicholas THOMSON, Rui MA, Benjamin ORR, Nathan JACK, Mauro KOBRINSKY, Patrick MORROW, Chung-Hsun LIN
  • Publication number: 20220415881
    Abstract: Substrate-less silicon controlled rectifier (SCR) integrated circuit structures, and methods of fabricating substrate-less silicon controlled rectifier (SCR) integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a first fin portion and a second fin portion that meet at a junction. A plurality of gate structures is over the first fin portion and a second fin portion. A plurality of P-type epitaxial structures and N-type epitaxial structures is between corresponding adjacent ones of the plurality of gate structures. Pairs of the P-type epitaxial structures alternate with pairs of the N-type epitaxial structures.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Rui MA, Kalyan KOLLURU, Nicholas THOMSON, Ayan KAR, Benjamin ORR, Nathan JACK, Biswajeet GUHA, Brian GREENE, Chung-Hsun LIN
  • Publication number: 20220416027
    Abstract: Gate-all-around integrated circuit structures having nanoribbon sub-fin isolation by backside Si substrate removal etch selective to source and drain epitaxy, are described. For example, an integrated circuit structure includes a plurality of horizontal nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of horizontal nanowires; and a doped nucleation layer at a base of the epitaxial source or drain structures adjacent to the sub-fin. Where the integrated circuit structure comprises an NMOS transistor, doped nucleation layer comprises a carbon-doped nucleation layer. Where the integrated circuit structure comprises a PMOS transistor, doped nucleation layer comprises a heavy boron-doped nucleation layer.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: William HSU, Biswajeet GUHA, Chung-Hsun LIN, Anand S. MURTHY, Tahir GHANI