Patents by Inventor Chung Yi

Chung Yi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240169944
    Abstract: An apparatus including a pixel electrode circuit is provided. The pixel electrode circuit includes a first switch, a second switch, a first-type transistor, a first second-type transistor, and a second second-type transistor. The first switch and the second switch are respectively controlled by a first control signal and a second control signal. The first-type transistor includes a gate electrically connected to a first node, a first terminal connected to a first power supply voltage, and a second terminal connected to a third node. The first second-type transistor includes a gate electrically connected to a second node, a first terminal connected to a second power supply voltage, and a second terminal connected to the third node. The second second-type transistor includes a gate electrically connected to the second node, a first terminal being grounded, and a second terminal providing an output voltage.
    Type: Application
    Filed: October 6, 2023
    Publication date: May 23, 2024
    Inventors: Tung-Yu WU, Chung-Yi WANG, Tang-Hung PO
  • Publication number: 20240169943
    Abstract: An apparatus including a pixel electrode circuit is provided. The pixel electrode circuit includes a first switch, a second switch, a first-type transistor, a first second-type transistor, and a second second-type transistor. The first switch and the second switch are respectively controlled by a first control signal and a second control signal. The first-type transistor includes a gate electrically connected to a first node, a first terminal connected to a first power supply voltage, and a second terminal connected to a third node. The first second-type transistor includes a gate electrically connected to a second node, a first terminal connected to a second power supply voltage, and a second terminal connected to the third node. The second second-type transistor includes a gate electrically connected to the second node, a first terminal being grounded, and a second terminal providing an output voltage.
    Type: Application
    Filed: July 21, 2023
    Publication date: May 23, 2024
    Inventors: Tung-Yu WU, Chung-Yi WANG, Tang-Hung PO
  • Publication number: 20240170326
    Abstract: A manufacturing method of a semiconductor device includes at least the following steps. A sacrificial substrate is provided. An etch stop layer is formed on the sacrificial substrate. A portion of the etch stop layer is oxidized to form an oxide layer between the sacrificial substrate and the remaining etch stop layer. A capping layer is formed on the remaining etch stop layer. A device layer is formed on the capping layer. A first etching process is performed to remove the sacrificial substrate. A second etching process is performed to remove the oxide layer. A third etching process is performed to remove the remaining etch stop layer. A power rail is formed on the capping layer opposite to the device layer.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 23, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Kuei-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Publication number: 20240165625
    Abstract: An apparatus and a system are provided. The system includes a top plate electrode, a dielectric layer, a plurality of pixel electrode circuits, and a plurality of detection circuits. A droplet is disposed between the top plate electrode and the dielectric layer. The plurality of pixel electrode circuits are arranged in a two-dimensional array. The pixel electrode circuits in each column of the two-dimensional array are electrically connected to a respective detection circuit of the plurality of detection circuits.
    Type: Application
    Filed: November 15, 2023
    Publication date: May 23, 2024
    Inventors: Tung-Yu WU, Chung-Yi WANG, Tang-Hung PO
  • Publication number: 20240159826
    Abstract: An automated test mechanism includes: preparing test software capable of reading and processing a file in a general form, and making the test software support N kinds of communication interfaces, M kinds of communication protocols, and multiple commands of K kinds of instruments, wherein the general form includes an interface setting part, a communication protocol setting part, and a function list part; creating multiple general form files in the general form to support the K kinds of instruments, wherein the multiple general form files include a first file and a second file that are prepared for a first instrument and a second instrument of the multiple instruments respectively; and when performing a first test with the first instrument, choosing the first file for the first test, and when performing a second test with the second instrument, choosing the second file for the second test.
    Type: Application
    Filed: November 10, 2023
    Publication date: May 16, 2024
    Inventors: CHUNG-YI WANG, CHIA-CHE WU
  • Publication number: 20240162051
    Abstract: Some implementations described herein include systems and techniques for fabricating a stacked die product. The systems and techniques include using a supporting fill mixture that includes a combination of types of composite particulates in a lateral gap region of a stack of semiconductor substrates and along a perimeter region of the stack of semiconductor substrates. One type of composite particulate included in the combination may be a relatively smaller size and include a smooth surface, allowing the composite particulate to ingress deep into the lateral gap region. Properties of the supporting fill mixture including the combination of types of composite particulates may control thermally induced stresses during downstream manufacturing to reduce a likelihood of defects in the supporting fill mixture and/or the stack of semiconductor substrates.
    Type: Application
    Filed: April 27, 2023
    Publication date: May 16, 2024
    Inventors: Kuo-Ming WU, Hau-Yi HSIAO, Kai-Yun YANG, Che Wei YANG, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240162208
    Abstract: A structure with a photodiode, an HEMT and an SAW device includes a photodiode and an HEMT. The photodiode includes a first electrode and a second electrode. The first electrode contacts a P-type III-V semiconductor layer. The second electrode contacts an N-type III-V semiconductor layer. The HEMT includes a P-type gate disposed on an active layer. A gate electrode is disposed on the P-type gate. Two source/drain electrodes are respectively disposed at two sides of the P-type gate. Schottky contact is between the first electrode and the P-type III-V semiconductor layer, and between the gate electrode and the P-type gate. Ohmic contact is between the second electrode and the first N-type III-V semiconductor layer, and between one of the two source/drain electrodes and the active layer and between the other one of two source/drain electrodes and the active layer.
    Type: Application
    Filed: December 7, 2022
    Publication date: May 16, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chih-Wei Chang, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Patent number: 11984486
    Abstract: A method including forming a III-V compound layer on a substrate and implanting a main dopant in the III-V compound layer to form source and drain regions. The method further includes implanting a group V species into the source and drain regions. A semiconductor device including a substrate and a III-V compound layer over the substrate. The semiconductor device further includes source and drain regions in the III-V layer, wherein the source and drain regions comprises a first dopants and a second dopant, and the second dopant comprises a group V material.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chen-Hao Chiang
  • Publication number: 20240128324
    Abstract: A field effect transistor includes a substrate having a transistor forming region thereon; an insulating layer on the substrate; a first graphene layer on the insulating layer within the transistor forming region; an etch stop layer on the first graphene layer within the transistor forming region; a first inter-layer dielectric layer on the etch stop layer; a gate trench recessed into the first inter-layer dielectric layer and the etch stop layer within the transistor forming region; a second graphene layer on interior surface of the gate trench; a gate dielectric layer on the second graphene layer and on the first inter-layer dielectric layer; and a gate electrode on the gate dielectric layer within the gate trench.
    Type: Application
    Filed: November 21, 2022
    Publication date: April 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Shih-Min Chou, Nien-Ting Ho, Wei-Ming Hsiao, Li-Han Chen, Szu-Yao Yu, Chung-Yi Chiu
  • Publication number: 20240126164
    Abstract: Some embodiments include a reticle which includes first pattern features and second pattern features. A first optimal dose of actinic radiation is associated with the first pattern features and a second optimal dose of the actinic radiation is associated with the second pattern features. The second pattern features are larger than the first pattern features. Each of the second pattern features has a configuration which includes a central region laterally surrounded by an outer region, with the central region being of different opacity than the outer region. The configurations of the second pattern features balance the second optimal dose of the actinic radiation to be within about 5% of the first optimal dose of the actinic radiation. Some embodiments include photo-processing methods.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 18, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Chung-Yi Lee, Reha M. Bafrali
  • Patent number: 11963410
    Abstract: A display device includes a substrate including a pixel region and a peripheral region. A plurality of pixels is disposed in the pixel region of the substrate. Each of the plurality of pixels includes a light emitting element. Data lines and scan lines are connected to each of the plurality of pixels. A power line is configured to supply power to the plurality of pixels. The power line includes a plurality of first conductive lines and a plurality of second conductive lines intersecting the plurality of first conductive lines. The plurality of second conductive lines is arranged in a region between adjacent light emitting elements of the plurality of pixels. At least some of the plurality of second conductive lines extend in a direction oblique to a direction of extension of the data lines or the scan lines.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 16, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yang Wan Kim, Byung Sun Kim, Jae Yong Lee, Chung Yi, Hyung Jun Park, Su Jin Lee
  • Patent number: 11956583
    Abstract: Disclosed is a headphone including a headband and two ear cups connected to opposite ends of the headband. Each of the ear cups includes a shell, a front cover, and a light sensor. The shell has an open end. The front cover covers the open end of the shell. The front cover is in a basin form and has a peripheral sidewall and a bottom wall. The light sensor is located on the peripheral sidewall of the front cover. The light sensor includes a light-emitting unit and a light detection unit. When a user wears the headphone, light emitted by the light-emitting unit irradiates a flat portion of a back surface of an ear of the user.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Merry Electronics Co., Ltd.
    Inventors: Hung-Uei Jou, Ko-Min Wang, Chung-Yi Huang
  • Publication number: 20240107777
    Abstract: An SOT MRAM structure includes a word line. A second source/drain doping region and a fourth source/drain doping region are disposed at the same side of the word line. A first conductive line contacts the second source/drain doping region. A second conductive line contacts the fourth source/drain doping region. The second conductive line includes a third metal pad. A memory element contacts an end of the first conductive line. A second SOT element covers and contacts a top surface of the memory element. The third metal pad covers and contacts part of the top surface of the second SOT element.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Kuo, Hung-Chan Lin, Chung-Yi Chiu
  • Publication number: 20240103377
    Abstract: A composition and method for removing a metal-containing layer or portion of a layer of a pellicle of an EUV mask are provided. The composition includes water; one or more oxidizing agents; and one or more acids. The method includes forming one or more layers over a silicon substrate with at least one of those layers includes a metal containing layer and removing the metal containing layer by contacting the metal containing layer with the composition of the disclosed and claimed subject matter.
    Type: Application
    Filed: October 15, 2020
    Publication date: March 28, 2024
    Applicant: Versum Materials US, LLC
    Inventors: CHAO-HSIANG CHEN, CHUNG-YI CHANG, YI-CHIA LEE, WEN DAR LIU
  • Patent number: 11934106
    Abstract: An optical proximity correction (OPC) device and method is provided. The OPC device includes an analysis unit, a reverse pattern addition unit, a first OPC unit, a second OPC unit and an output unit. The analysis unit is configured to analyze a defect pattern from a photomask layout. The reverse pattern addition unit is configured to provide a reverse pattern within the defect pattern. The first OPC unit is configured to perform a first OPC procedure on whole of the photomask layout. The second OPC unit is configured to perform a second OPC procedure on the defect pattern of the photomask layout to enhance an exposure tolerance window. The output unit is configured to output the photomask layout which is corrected.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shu-Yen Liu, Hui-Fang Kuo, Chian-Ting Huang, Wei-Cyuan Lo, Yung-Feng Cheng, Chung-Yi Chiu
  • Patent number: 11932534
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Publication number: 20240088070
    Abstract: Provided is a package structure and a method of forming the same. The package structure includes a semiconductor package, a stacked patch antenna structure, and a plurality of conductive connectors. The semiconductor package includes a die. The stacked patch antenna structure is disposed on the semiconductor package, and separated from the semiconductor package by an air cavity. The plurality of conductive connectors is disposed in the air cavity between the semiconductor package and the stacked patch antenna structure to connect the semiconductor package and the stacked patch antenna structure.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yi Hsu, Kai-Chiang Wu, Yen-Ping Wang
  • Publication number: 20240088285
    Abstract: Various embodiments of the present application are directed towards a group III-V device including a rough buffer layer. The rough buffer layer overlies a silicon substrate, a buffer structure overlies the rough buffer layer, and a heterojunction structure overlies the buffer structure. The buffer structure causes band bending and formation of a two-dimensional hole gas (2DHG) in the rough buffer layer. The rough buffer layer includes silicon or some other suitable semiconductor material and, in some embodiments, is doped. A top surface of the rough buffer layer and/or a bottom surface of the rough buffer layer is/are rough to promote carrier scattering along the top and bottom surfaces. The carrier scattering reduces carrier mobility and increases resistance at the 2DHG. The increased resistance increases an overall resistance of the silicon substrate, which reduces substrate loses and increases a power added efficiency (PAE).
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240088103
    Abstract: Various embodiments of the present disclosure are directed towards a three-dimensional (3D) trench capacitor, as well as methods for forming the same. In some embodiments, a first substrate overlies a second substrate so a front side of the first substrate faces a front side of the second substrate. A first trench capacitor and a second trench capacitor extend respectively into the front sides of the first and second substrates. A plurality of wires and a plurality of vias are stacked between and electrically coupled to the first and second trench capacitors. A first through substrate via (TSV) extends through the first substrate from a back side of the first substrate, and the wires and the vias electrically couple the first TSV to the first and second trench capacitors. The first and second trench capacitors and the electrical coupling therebetween collectively define the 3D trench capacitor.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Xin-Hua Huang, Chung-Yi Yu, Yeong-Jyh Lin, Rei-Lin Chu