Patents by Inventor Claudio Cobelli

Claudio Cobelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12226234
    Abstract: Continuous Glucose Monitoring (CGM) devices provide glucose concentration measurements in the subcutaneous tissue with limited accuracy and precision. Therefore, CGM readings cannot be incorporated in a straightforward manner in outcome metrics of clinical trials e.g. aimed to assess new glycemic-regulation therapies. To define those outcome metrics, frequent Blood Glucose (BG) reference measurements are still needed, with consequent relevant difficulties in outpatient settings. Here we propose a “retrofitting” algorithm that produces a quasi continuous time BG profile by simultaneously exploiting the high accuracy of available BG references (possibly very sparsely collected) and the high temporal resolution of CGM data (usually noisy and affected by significant bias).
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: February 18, 2025
    Assignee: Dexcom, Inc.
    Inventors: Claudio Cobelli, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
  • Publication number: 20240293619
    Abstract: A device for monitoring a diabetic patient includes continuous glucose monitoring system that is configured to generate glucose data indicative of the patient's actual glucose level. An continuous subcutaneous insulin infusion pump is configured to inject insulin into the patient and that is configured to generate insulin data regarding when and how much insulin has been injected into the patient. A processor, programmed with a discrete-time reiterative filter, calculates a predicted glucose level corresponding to a predicted glucose level currently expected to be sensed by the continuous glucose monitoring system, based on the insulin data and the glucose data over time and is also programed to generate an alert when the actual glucose level is different from the predicted glucose level by a predetermined amount. An alert generating device is coupled to the processor and is configured to generate an aesthetically-sensible event corresponding to the generation of the alert.
    Type: Application
    Filed: March 25, 2024
    Publication date: September 5, 2024
    Inventors: Andrea Facchinetti, Simone Del Favero, Giovanni Sparacino, Claudio Cobelli
  • Publication number: 20240188899
    Abstract: A device for generating alerts for Hypo and Hyperglycemia Prevention from Continuous Glucose Monitoring (CGM) determines a dynamic risk based on both information of glucose level and a trend obtainable from a CGM signals. The device includes a display whose color depends on the DR (for example, red for high DR, green for low risk). When DR exceeds a certain threshold, alerts are generated to suggest the patient to pay attention to the current glucose reading and to its trend, both of which are shown on the display in numbers and symbols (e.g. an arrow with different slope or color).
    Type: Application
    Filed: January 29, 2024
    Publication date: June 13, 2024
    Inventors: Giovanni SPARACINO, Claudio COBELLI, Stefania GUERRA, Andrea FACCHINETTI, Michele SCHIAVON
  • Patent number: 11925484
    Abstract: A device for generating alerts for Hypo and Hyperglycemia Prevention from Continuous Glucose Monitoring (CGM) determines a dynamic risk based on both information of glucose level and a trend obtainable from a CGM signals. The device includes a display whose color depends on the DR (for example, red for high DR, green for low risk). When DR exceeds a certain threshold, alerts are generated to suggest the patient to pay attention to the current glucose reading and to its trend, both of which are shown on the display in numbers and symbols (e.g. an arrow with different slope or color).
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: March 12, 2024
    Assignee: Dexcom, Inc.
    Inventors: Giovanni Sparacino, Claudio Cobelli, Stefania Guerra, Andrea Facchinetti, Michele Schiavon
  • Publication number: 20230343457
    Abstract: A mathematical model of type 1 diabetes (T1D) patient decision-making can be used to simulate, in silico, realistic glucose/insulin dynamics, for several days, in a variety of subjects who take therapeutic actions (e.g. insulin dosing) driven by either self-monitoring blood glucose (SMBG) or continuous glucose monitoring (CGM). The decision-making (DM) model can simulate real-life situations and everyday patient behaviors. Accurate submodels of SMBG and CGM measurement errors are incorporated in the comprehensive DM model. The DM model accounts for common errors the patients are used to doing in their diabetes management, such as miscalculations of meal carbohydrate content, early/delayed insulin administrations and missed insulin boluses. The DM model can be used to assess in silico if/when CGM can safely substitute SMBG in T1D management, to develop and test guidelines for CGM driven insulin dosing, to optimize and individualize off-line insulin therapies and to develop and test decision support systems.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 26, 2023
    Applicant: Dexcom, Inc.
    Inventors: Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Claudio Cobelli
  • Patent number: 11749408
    Abstract: A mathematical model of type 1 diabetes (T1D) patient decision-making can be used to simulate, in silico, realistic glucose/insulin dynamics, for several days, in a variety of subjects who take therapeutic actions (e.g. insulin dosing) driven by either self-monitoring blood glucose (SMBG) or continuous glucose monitoring (CGM). The decision-making (DM) model can simulate real-life situations and everyday patient behaviors. Accurate submodels of SMBG and CGM measurement errors are incorporated in the comprehensive DM model. The DM model accounts for common errors the patients are used to doing in their diabetes management, such as miscalculations of meal carbohydrate content, early/delayed insulin administrations and missed insulin boluses. The DM model can be used to assess in silico if/when CGM can safely substitute SMBG in T1D management, to develop and test guidelines for CGM driven insulin dosing, to optimize and individualize off-line insulin therapies and to develop and test decision support systems.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: September 5, 2023
    Assignee: DEXCOM, INC.
    Inventors: Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Claudio Cobelli
  • Publication number: 20230210412
    Abstract: Continuous Glucose Monitoring (CGM) devices provide glucose concentration measurements in the subcutaneous tissue with limited accuracy and precision. Therefore, CGM readings cannot be incorporated in a straightforward manner in outcome metrics of clinical trials e.g. aimed to assess new glycaemic-regulation therapies. To define those outcome metrics, frequent Blood Glucose (BG) reference measurements are still needed, with consequent relevant difficulties in outpatient settings. Here we propose a “retrofitting” algorithm that produces a quasi continuous time BG profile by simultaneously exploiting the high accuracy of available BG references (possibly very sparsely collected) and the high temporal resolution of CGM data (usually noisy and affected by significant bias).
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Claudio COBELLI, Simone DEL FAVERO, Andrea FACCHINETTI, Giovanni SPARACINO
  • Publication number: 20230210474
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 6, 2023
    Inventors: Hari HAMPAPURAM, Anna Leigh DAVIS, Naresh C. BHAVARAJU, Apurv Ullas KAMATH, Claudio COBELLI, Giovanni SPARACINO, Andrea FACCHINETTI, Chiara ZECCHIN
  • Patent number: 11690577
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Dexcom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Patent number: 11633156
    Abstract: Continuous Glucose Monitoring (CGM) devices provide glucose concentration measurements in the subcutaneous tissue with limited accuracy and precision. Therefore, CGM readings cannot be incorporated in a straightforward manner in outcome metrics of clinical trials e.g. aimed to assess new glycaemic-regulation therapies. To define those outcome metrics, frequent Blood Glucose (BG) reference measurements are still needed, with consequent relevant difficulties in outpatient settings. Here we propose a “retrofitting” algorithm that produces a quasi continuous time BG profile by simultaneously exploiting the high accuracy of available BG references (possibly very sparsely collected) and the high temporal resolution of CGM data (usually noisy and affected by significant bias).
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: April 25, 2023
    Assignee: Dexcom Inc.
    Inventors: Claudio Cobelli, Simone Del Favero, Andrea Facchinetti, Giovanni Sparacino
  • Patent number: 11540768
    Abstract: Method for detecting biomechanical and functional parameters of the knee in a situation of performance stress, which comprises: a step for the set up of video recording means (1); a step for the set up of multiple optical markers (4) at specific landmark anatomic points (PA) of the foot and of the knee of a person; a step for the set up, at the plantar surface of the foot, of baropodometric means (5); a step for the acquisition, by means of the video recording means (1), of images of at least one reference action, and a step for the detection, by means of the baropodometric means (5), of baropodometric parameters; a step for calculating, from the baropodometric parameters, the coordinates of the center of pressure (COP) of the foot and of the constraining reaction force (FV) acting on the foot; a step for calculating a force arm (BF) given by the distance between the center of pressure (COP) and a reference point (PR) of the knee; a step for calculating a biomechanical parameter indicative of the valgus momen
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 3, 2023
    Assignee: UNIVERSITA DEGLI STUDI DI PADOVA
    Inventors: Zimi Sawacha, Davide Pavan, Federica Cibin, Giorgio Sbrocco, Annamaria Guiotto, Claudio Cobelli, Fabiola Spolaor
  • Publication number: 20220313173
    Abstract: A device for generating alerts for Hypo and Hyperglycemia Prevention from Continuous Glucose Monitoring (CGM) determines a dynamic risk based on both information of glucose level and a trend obtainable from a CGM signals. The device includes a display whose color depends on the DR (for example, red for high DR, green for low risk). When DR exceeds a certain threshold, alerts are generated to suggest the patient to pay attention to the current glucose reading and to its trend, both of which are shown on the display in numbers and symbols (e.g. an arrow with different slope or color).
    Type: Application
    Filed: June 23, 2022
    Publication date: October 6, 2022
    Inventors: Giovanni SPARACINO, Claudio COBELLI, Stefania GUERRA, Andrea FACCHINETTI, Michele SCHIAVON
  • Patent number: 11412992
    Abstract: A device for generating alerts for Hypo and Hyperglycemia Prevention from Continuous Glucose Monitoring (CGM) determines a dynamic risk based on both information of glucose level and a trend obtainable from a CGM signals. The device includes a display whose color depends on the DR (for example, red for high DR, green for low risk). When DR exceeds a certain threshold, alerts are generated to suggest the patient to pay attention to the current glucose reading and to its trend, both of which are shown on the display in numbers and symbols (e.g. an arrow with different slope or color).
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: August 16, 2022
    Assignee: Dexcom, Inc.
    Inventors: Giovanni Sparacino, Claudio Cobelli, Stefania Guerra, Andrea Facchinetti, Michele Schiavon
  • Publication number: 20220230762
    Abstract: An electronic system and method simulates a glucose-insulin metabolic system of a T2DM or prediabetic subject, wherein the system includes a subsystem that models dynamic glucose concentration in a T2DM or prediabetic subject, including an electronic module that models endogenous glucose production (EGP(t)), or meal glucose rate of appearance (Ra(t), or glucose utilization (U(t)), or renal excretion of glucose (B(t)), a subsystem that models dynamic insulin concentration in the T2DM or prediabetic subject, including an electronic module that models insulin secretion (S(t)), an electronic database containing a population of virtual T2DM or prediabetic subjects, each virtual subject having a plurality of metabolic parameters, and a processing module that calculates an effect of variation of at least one metabolic parameter value on the glucose insulin metabolic system of a virtual subject by inputting the plurality of metabolic parameter values.
    Type: Application
    Filed: February 1, 2022
    Publication date: July 21, 2022
    Inventors: Boris P. Kovatchev, Claudio Cobelli, Chiara Dalla Man
  • Publication number: 20220044813
    Abstract: A mathematical model of type 1 diabetes (T1D) patient decision-making can be used to simulate, in silico, realistic glucose/insulin dynamics, for several days, in a variety of subjects who take therapeutic actions (e.g. insulin dosing) driven by either self-monitoring blood glucose (SMBG) or continuous glucose monitoring (CGM). The decision-making (DM) model can simulate real-life situations and everyday patient behaviors. Accurate submodels of SMBG and CGM measurement errors are incorporated in the comprehensive DM model. The DM model accounts for common errors the patients are used to doing in their diabetes management, such as miscalculations of meal carbohydrate content, early/delayed insulin administrations and missed insulin boluses. The DM model can be used to assess in silico if/when CGM can safely substitute SMBG in T1D management, to develop and test guidelines for CGM driven insulin dosing, to optimize and individualize off-line insulin therapies and to develop and test decision support systems.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 10, 2022
    Inventors: Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Claudio Cobelli
  • Patent number: 11238990
    Abstract: An electronic system is provided that simulates a glucose-insulin metabolic system of a T2DM or prediabetic subject, wherein the system includes a subsystem that models dynamic glucose concentration in a T2DM or prediabetic subject, including an electronic module that models endogenous glucose production (EGP(t)), or meal glucose rate of appearance (Ra(t>>, or glucose utilization (U(t)), or renal excretion of glucose (B(t)), a subsystem that models dynamic insulin concentration in said T2DM or prediabetic subject, including an electronic module that models insulin secretion (S(t)), an electronic database containing a population of virtual T2DM or prediabetic subjects, each virtual subject having a plurality of metabolic parameters, and a processing module that calculates an effect of variation of at least one metabolic parameter value on the glucose insulin metabolic system of a virtual subject by inputting the plurality of metabolic parameter values.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 1, 2022
    Assignee: University of Virginia Patent Foundation
    Inventors: Boris P. Kovatchev, Claudio Cobelli, Chiara Dalla Man
  • Patent number: 11183301
    Abstract: A mathematical model of type 1 diabetes (T1D) patient decision-making can be used to simulate, in silico, realistic glucose/insulin dynamics, for several days, in a variety of subjects who take therapeutic actions (e.g. insulin dosing) driven by either self-monitoring blood glucose (SMBG) or continuous glucose monitoring (CGM). The decision-making (DM) model can simulate real-life situations and everyday patient behaviors, Accurate submodels of SMBG and CGM measurement errors are incorporated in the comprehensive DM model. The DM model accounts for common errors the patients are used to doing in their diabetes management, such as miscalculations of meal carbohydrate content, early/delayed insulin administrations and missed insulin boluses. The DM model can be used to assess in silico if/when CGM can safely substitute SMBG in T1D management, to develop and test guidelines for CGM driven insulin dosing, to optimize and individualize off-line insulin therapies and to develop and test decision support systems.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 23, 2021
    Assignee: DexCom, Inc.
    Inventors: Martina Vettoretti, Andrea Facchinetti, Giovanni Sparacino, Claudio Cobelli
  • Patent number: 11026640
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: June 8, 2021
    Assignee: DexCom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20210145371
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 20, 2021
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Patent number: 11006903
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 18, 2021
    Assignee: DexCom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin