Patents by Inventor Colin Blakely

Colin Blakely has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230261154
    Abstract: Light-emitting diode (LED) packages and more particularly LED packages with selectively placed light-altering materials and related methods are disclosed. Selectively placed light-altering materials are provided that are arranged along peripheral edges of LED chips and along portions of underlying submounts. By covering peripheral edges of LED chips without covering entire submount surfaces, light-altering materials may be provided in reduced amounts while still redirecting laterally propagating light from the LED chips. Methods of selectively placing light-altering materials include selectively dispensing one or more droplets on submount portions that are proximate LED chip edges and allowing the one or more droplets to wick about the LED chip edges and portions of the submount before curing in place.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Inventors: Sarah Trinkle, Alexis Rile, Robert Wilcox, Colin Blakely
  • Publication number: 20230260972
    Abstract: Light-emitting diode (LED) packages, and more particularly arrangements of multiple LED chips in LED packages are disclosed. Arrangements include different types, different dimensions, and/or different orientations of LED chips within LED packages and corresponding electrical connections. Further arrangements include individual cover structures having different dimensions for various LED chips to accommodate thickness variations of LED chips and/or thickness variations attributed to different elements of individual cover structures. Different cover structure elements may include lumiphoric materials, antireflective layers, filter layers, and polarization layers. By accounting for dimensional variations between LED chips and/or between cover structures within multiple-chip LED packages, aggregate light-emitting surfaces may be provided with improved emission uniformity.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Inventors: Thomas Celano, Alexis Rile, Derek Miller, David Suich, Colin Blakely, Sarah Trinkle, Robert Wilcox
  • Patent number: 11727857
    Abstract: Active control of light emitting diodes (LEDs) and LED packages within LED displays is disclosed. LED packages are disclosed that include a plurality of LED chips that form at least one LED pixel for an LED display. Each LED package may include an active electrical element that is configured to receive a control signal and actively maintain an operating state, such as brightness or grey level while other LED packages are being addressed. Active electrical elements may include active circuitry that includes one or more of a driver device, a signal conditioning or transformation device, a memory device, a decoder device, an electrostatic discharge (ESD) protection device, a thermal management device, and a detection device, among others. In this regard, each LED pixel of an LED display may be configured for operation with active matrix addressing.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: August 15, 2023
    Assignee: CreeLED, Inc.
    Inventors: Christopher P. Hussell, Boris Dzyubenko, Colin Blakely
  • Patent number: 11705542
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly binder materials for light-emitting devices are disclosed. A lumiphoric material for a light-emitting device may include lumiphoric particles embedded within a binder material. The lumiphoric material may be formed according to sol-gel chemistry techniques where a solution of binder precursors and lumiphoric particles is applied to a surface, dried to reduce liquid phase, and fired to form a hardened and dense lumiphoric material. The binder precursors may include metal oxide precursors that result in a metal oxide binder. In this manner, the lumiphoric material may have high thermal conductivity while also being adaptable for liquid-phase processing. In further embodiments, binder materials with or without lumiphoric particles may be utilized in place of conventional encapsulation materials for light-emitting devices.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 18, 2023
    Assignee: CreeLED, Inc.
    Inventors: Walter Weare, Derek Miller, Brian T. Collins, Colin Blakely
  • Patent number: 11688832
    Abstract: Solid-state lighting devices and more particularly light-emitting devices including light-emitting diodes (LEDs) with light-altering material arrangements are disclosed. LED devices may include light-altering materials that are provided around peripheral sidewalls of LED chips without the need for a supporting submount or lead frame. The light-altering materials may be provided with reduced thicknesses along peripheral sidewalls of LED chips. An exemplary LED device as disclosed herein may be configured with a footprint that is close to a footprint of the LED chip within the LED device while also providing an amount of light-altering material around peripheral edges of the LED chip to reduce cross-talk. Accordingly, such LED devices may be well suited for use in applications where LED devices form closely-spaced LED arrays. Fabrication techniques are disclosed that include laminating a preformed sheet of light-altering material on one or more surfaces of the LED chip.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: June 27, 2023
    Assignee: CreeLED, Inc.
    Inventors: Tucker McFarlane, Matthew Brady, Derek Miller, Colin Blakely
  • Publication number: 20230170449
    Abstract: Aspects disclosed herein relate to light-emitting diode (LED) chips and manufacturing processes thereof. In certain aspects, an LED chip includes an epitaxial layer with a first side and a second side, a first type contact proximate a second side of the epitaxial layer, and a wavelength conversion element including at least one lumiphore. In certain embodiments, in a flip-chip construction, a distance between the at least one lumiphore and the epitaxial layer is less than 5 microns and/or the first side of the epitaxial layer includes texturing. In certain embodiments, in a vertical stack construction, a transparent bonding layer between the epitaxial layer and the wavelength conversion element includes inorganic material. In certain embodiments, a ceramic layer is bonded to the second side of the epitaxial layer and positioned horizontally adjacent to the first type contact. Such configurations facilitate construction, decrease size, and/or increase performance of the LED chips.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: David Suich, Christopher P. Hussell, Michael Check, Colin Blakely, Steven Wuester, Brian T. Collins
  • Publication number: 20230170447
    Abstract: Aspects disclosed herein relate to light-emitting diode (LED) chips and manufacturing processes thereof. In certain aspects, an LED chip includes an epitaxial layer with a first side and a second side, a first type contact proximate a second side of the epitaxial layer, and a wavelength conversion element including at least one lumiphore. In certain embodiments, in a flip-chip construction, a distance between the at least one lumiphore and the epitaxial layer is less than 5 microns and/or the first side of the epitaxial layer includes texturing. In certain embodiments, in a vertical stack construction, a transparent bonding layer between the epitaxial layer and the wavelength conversion element includes inorganic material. In certain embodiments, a ceramic layer is bonded to the second side of the epitaxial layer and positioned horizontally adjacent to the first type contact. Such configurations facilitate construction, decrease size, and/or increase performance of the LED chips.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: David Suich, Christopher P. Hussell, Michael Check, Colin Blakely, Steven Wuester, Brian T. Collins
  • Publication number: 20230170445
    Abstract: Aspects disclosed herein relate to light-emitting diode (LED) chips and manufacturing processes thereof. In certain aspects, an LED chip includes an epitaxial layer with a first side and a second side, a first type contact proximate a second side of the epitaxial layer, and a wavelength conversion element including at least one lumiphore. In certain embodiments, in a flip-chip construction, a distance between the at least one lumiphore and the epitaxial layer is less than 5 microns and/or the first side of the epitaxial layer includes texturing. In certain embodiments, in a vertical stack construction, a transparent bonding layer between the epitaxial layer and the wavelength conversion element includes inorganic material. In certain embodiments, a ceramic layer is bonded to the second side of the epitaxial layer and positioned horizontally adjacent to the first type contact. Such configurations facilitate construction, decrease size, and/or increase performance of the LED chips.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: David Suich, Christopher P. Hussell, Michael Check, Colin Blakely, Steven Wuester, Brian T. Collins
  • Publication number: 20230170335
    Abstract: Aspects disclosed herein relate to light-emitting diode (LED) chips and manufacturing processes thereof. In certain aspects, an LED chip includes an epitaxial layer with a first side and a second side, a first type contact proximate a second side of the epitaxial layer, and a wavelength conversion element including at least one lumiphore. In certain embodiments, in a flip-chip construction, a distance between the at least one lumiphore and the epitaxial layer is less than 5 microns and/or the first side of the epitaxial layer includes texturing. In certain embodiments, in a vertical stack construction, a transparent bonding layer between the epitaxial layer and the wavelength conversion element includes inorganic material. In certain embodiments, a ceramic layer is bonded to the second side of the epitaxial layer and positioned horizontally adjacent to the first type contact. Such configurations facilitate construction, decrease size, and/or increase performance of the LED chips.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: David Suich, Christopher P. Hussell, Michael Check, Colin Blakely, Steven Wuester, Brian T. Collins
  • Publication number: 20230140302
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly polarization structures for LED devices are disclosed. Polarization structures are disclosed that are integrated within light-emitting devices and are capable of receiving unpolarized light and providing polarized light that exits the light-emitting devices. Polarization structures may be formed on or in various surfaces within light-emitting devices, such as one or more surfaces of cover structures and/or LED chips. LED packages with multiple LED chips and multiple polarization structures are also disclosed. The LED chips may be arranged to be electrically activated and deactivated independently of one another such that corresponding LED packages are capable of electronically switching between different orientations of polarized and/or unpolarized light.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Inventors: Derek Miller, Colin Blakely
  • Publication number: 20230120890
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly integrated secondary optics into LED chip cover structures for improved optical emission of high intensity LEDs is disclosed. Optical elements are integrated as a secondary optic onto one or both surfaces of a chip cover structure, where the chip cover structure may be referred to as a primary optic. The integrated secondary optic may be formed directly on one or both surfaces of the chip cover structure. The integrated secondary optic is purposely built to be coupled with the light emission of the LED to emit a desired emission profile. In this regard, a final luminaire may be provided with increased efficiency either by improving the coupling of the LED into a conventional secondary optic or in some cases by removing the need for a conventional secondary optic all together.
    Type: Application
    Filed: September 16, 2022
    Publication date: April 20, 2023
    Inventors: Eric Kamp, Derek Miller, Colin Blakely
  • Publication number: 20230115342
    Abstract: Light-emitting diode (LED) packages, and more particularly broad electromagnetic spectrum LED packages are disclosed. Individual LED packages are disclosed that are capable of emitting various combinations of peak wavelengths across a broad electromagnetic spectrum, including one or more combinations of ultraviolet, visible, and infrared peak wavelengths. Such LED packages may also be broadly tunable across portions of the electromagnetic spectrum ranging from ultraviolet to infrared wavelengths. By providing such capabilities within a single light source provided by a single LED package, larger and more complex systems for broadband emissions that include multiple light sources, complex optical systems, mirrors, filters, and additional components may be avoided. LED chip arrangements, control schemes, and encapsulant arrangements are also disclosed for such broad electromagnetic spectrum LED packages.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Inventors: David Suich, Michael Check, Colin Blakely
  • Publication number: 20230112649
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly integrated warning structures for ultraviolet LED packages are disclosed. Integrated warning structures may include passive structures, such as lumiphoric material regions, that are arranged within LED packages to receive a portion of ultraviolet light from an LED chip within the LED package and provide a small amount of wavelength-converted light. Such wavelength-converted light may serve as indication that ultraviolet light is being emitted. Exemplary lumiphoric material regions may form one or more discrete regions within LED packages and may provide such wavelength-converted light without substantial impact on color purity of the LED packages. Accordingly, LED packages may provide integrated warning emissions that may serve to indicate the presence of ultraviolet emissions and/or reduce human exposure to such ultraviolet emissions.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 13, 2023
    Inventors: Colin Blakely, Andre Pertuit
  • Publication number: 20230106479
    Abstract: Multiple-junction light-emitting diodes (LEDs), and more particularly lumiphoric material arrangements for multiple-junction LEDs are disclosed. LEDs may refer to multiple-junction LED chips and/or LED packages that include multiple-junction LED chips. Individual lumiphoric material regions may be arranged in positions that are registered with individual junctions of a multiple-junction LED chip. The lumiphoric material regions may be formed at the LED chip level and/or at the LED package level. Different ones of the lumiphoric material regions may be configured to provide different wavelengths in response to recipient light emitted by junctions of the LED chip. In this manner, a single multiple-junction LED chip according to the present disclosure may be capable of providing a plurality of different emission colors and/or wavelengths.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 6, 2023
    Inventors: Morgan Meadows Davis, Colin Blakely, Kyle Damborsky, Michael Check
  • Publication number: 20230080947
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly cover structure arrangements for packaged LED devices are disclosed. Cover structures include light-absorbing layers configured to absorb certain wavelengths of light while permitting other wavelengths to pass therethrough. Light-absorbing layers may include pigment materials of colors that absorb intended wavelengths of light. In certain aspects, an LED package may include an LED chip configured to emit light of a first peak wavelength and a cover structure that includes a light-absorbing layer with a pigment of a color that absorbs the first peak wavelength. Such an arrangement may be useful for embodiments that also include a lumiphoric material that converts a portion of the first peak wavelength to light of a second peak wavelength.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Inventors: Colin Blakely, Eric Kamp, Derek Miller
  • Patent number: 11552229
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly LEDs and packaged LED devices with spacer layer arrangements are disclosed. An LED package may include one or more LED chips on a submount with a light-altering material arranged to redirect light in a desired emission direction with increased efficiency. A spacer layer is arranged in the LED package to cover rough surfaces and any gaps that may be formed between adjacent LED chips. When the light-altering material is applied to the LED package, the spacer layer provides a surface that reduces unintended propagation of the light-altering material toward areas of the LED package that would interfere with desired light emissions, for example over LED chips and between LED chips. In various arrangements, the spacer layer may cover one or more surfaces of a lumiphoric material, one or more LED chip surfaces, and portions of an underlying submount.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 10, 2023
    Assignee: CreeLED, Inc.
    Inventors: Kyle Damborsky, Ayush Tripathi, Robert Wilcox, Sarah Trinkle, Colin Blakely
  • Patent number: 11547063
    Abstract: Solid-state lighting devices and more particularly light-emitting devices for horticulture applications are disclosed. Light-emitting devices are disclosed with aggregate emissions that target chlorophyll absorption peaks while also providing certain broader spectrum emissions between the chlorophyll absorption peaks. The aggregate emissions may be provided by light-emitting diodes (LEDs) that emit wavelengths that correspond with certain chlorophyll absorption peaks and lumiphoric materials that provide broader spectrum emissions. The aggregate emissions are configured to have reduced emissions from lumiphoric materials in ranges close to certain chlorophyll absorption peaks, such as above 600 nanometers (nm). In this regard, light-emitting devices according to the present disclosure provide the ability to efficiently target specific chlorophyll absorption peaks for plant growth while also providing suitable lighting for occupants in a horticulture environment.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: January 10, 2023
    Assignee: CreeLED, Inc.
    Inventors: Paul Scheidt, Anna Costine, Derek Miller, Colin Blakely
  • Patent number: 11510294
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly packaged LED devices are disclosed. LED packages are disclosed herein with arrangements of LED chips and corresponding lumiphoric regions that are configured to provide overall light emissions having improved color mixing and emission uniformity. LED packages are further disclosed herein that are configured to be tunable between different colors or correlated color temperatures (CCTs) while providing improved color mixing and emission uniformity. Arrangements may include differing lumiphoric regions that are arranged with various alternating patterns including one or more intersecting lines, rows of alternating lumiphoric regions, patterns that alternate in at least two directions, and checkerboard patterns.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: November 22, 2022
    Assignee: CreeLED, Inc.
    Inventors: Aaron Francis, Kyle Damborsky, Robert Wilcox, Jasper Cabalu, Colin Blakely
  • Publication number: 20220262989
    Abstract: A light emitting device includes a LED having a light emitting first surface and a light emitting second surface that define a corner. A support layer is disposed to receive light emitted by the light emitting second surface and is disposed adjacent the corner. A luminophoric medium layer at least partially covers the light emitting first surface and the light emitting second surface where the luminophoric medium layer is at least partially supported by the support layer to prevent a narrowing of the luminophoric medium layer.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 18, 2022
    Inventors: Robert Wilcox, Sarah Trinkle, Derek Miller, Peter Andrews, Colin Blakely
  • Publication number: 20220254962
    Abstract: Optical arrangements in cover structures for packaged light-emitting diode (LED) devices are disclosed. LED packages may include a cover structure arranged over one or more LED chips. The cover structure may include arrangements of one or more sublayers or regions configured with different optical arrangements for tailoring emission characteristics for the LED package. The one or more sublayers or regions may include one or more arrangements of optical materials, including lumiphoric materials, materials with different indexes of refraction, light-scattering materials, and light-diffusing materials individually or in various combinations with one another to provide one or more of improved light output, increased light extraction, improved emission uniformity, and improved emission contrast for the LED package. Related methods include providing individual sheets of precursor materials that include different optical arrangements and firing the sheets together to form cover structures.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Derek Miller, Peter Scott Andrews, Colin Blakely, Brian T. Collins