Patents by Inventor Conal E. Murray

Conal E. Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772161
    Abstract: A method for modifying the chemistry or microstructure of silicon-based technology via an annealing process is provided. The method includes depositing a reactive material layer within a selected proximity to an interconnect, igniting the reactive material layer, and annealing the interconnect via heat transferred from the ignited reactive material layer. The method can also be implemented in connection with a silicide/silicon interface as well as a zone of silicon-based technology.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Gregory M. Fritz, Christian Lavoie, Conal E. Murray, Kenneth P Rodbell
  • Publication number: 20140159161
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Patent number: 8716695
    Abstract: A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Michael A. Guillorn, Conal E. Murray
  • Patent number: 8716037
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Patent number: 8624395
    Abstract: An IC interconnect for high direct current (DC) that is substantially immune to electro-migration (EM) damage, and a method of manufacture of the IC interconnect are provided. A structure includes a cluster-of-via structure at an intersection between inter-level wires. The cluster-of-via structure includes a plurality of vias each of which are filled with a metal and lined with a liner material. At least two adjacent of the vias are in contact with one another and the plurality of vias lowers current loading between the inter-level wires.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Conal E. Murray, Ping-Chuan Wang, Chih-Chao Yang
  • Publication number: 20130285020
    Abstract: A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 31, 2013
    Inventors: Guy Cohen, Michael A. Guillorn, Conal E. Murray
  • Patent number: 8564025
    Abstract: An intermediate process device is provided and includes a nanowire connecting first and second silicon-on-insulator (SOI) pads, a gate including a gate conductor surrounding the nanowire and poly-Si surrounding the gate conductor and silicide forming metal disposed to react with the poly-Si to form a fully silicided (FUSI) material to induce radial strain in the nanowire.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy Cohen, Conal E. Murray, Jeffrey W. Sleight
  • Patent number: 8450205
    Abstract: An IC interconnect for high direct current (DC) that is substantially immune to electro-migration (EM) damage, and a method of manufacture of the IC interconnect are provided. A structure includes a cluster-of-via structure at an intersection between inter-level wires. The cluster-of-via structure includes a plurality of vias each of which are filled with a metal and lined with a liner material. At least two adjacent of the vias are in contact with one another and the plurality of vias lowers current loading between the inter-level wires.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Conal E. Murray, Ping-Chuan Wang, Chih-Chao Yang
  • Patent number: 8445892
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Patent number: 8405215
    Abstract: A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Conal E. Murray
  • Patent number: 8399314
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks
  • Publication number: 20130049200
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to fond an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A silicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Publication number: 20130049199
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Publication number: 20130040454
    Abstract: A method for modifying the chemistry or microstructure of silicon-based technology via an annealing process is provided. The method includes depositing a reactive material layer within a selected proximity to an interconnect, igniting the reactive material layer, and annealing the interconnect via heat transferred from the ignited reactive material layer. The method can also be implemented in connection with a silicide/silicon interface as well as a zone of silicon-based technology.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Gregory M. Fritz, Christian Lavoie, Conal E. Murray, Kenneth P. Rodbell
  • Publication number: 20120329270
    Abstract: A method is provided which includes providing a dielectric material having a dielectric constant of about 4.0 or less and at least one conductive material embedded therein, the at least one conductive material has an upper surface that is coplanar with an upper surface of the dielectric material and the upper surface of the at least one conductive material has hollow-metal related defects that extend inward into the at least one conductive material; and filling the hollow-metal related defects with a surface repair material.
    Type: Application
    Filed: September 4, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Conal E. Murray
  • Publication number: 20120298948
    Abstract: An intermediate process device is provided and includes a nanowire connecting first and second silicon-on-insulator (SOI) pads, a gate including a gate conductor surrounding the nanowire and poly-Si surrounding the gate conductor and silicide forming metal disposed to react with the poly-Si to form a fully silicided (FUSI) material to induce radial strain in the nanowire.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sarunya Bangsaruntip, Guy Cohen, Conal E. Murray, Jeffrey W. Sleight
  • Patent number: 8313990
    Abstract: An intermediate process device is provided and includes a nanowire connecting first and second silicon-on-insulator (SOI) pads, a gate including a gate conductor surrounding the nanowire and poly-Si surrounding the gate conductor and silicide forming metal disposed to react with the poly-Si to form a fully silicided (FUSI) material to induce radial strain in the nanowire.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy Cohen, Conal E. Murray, Jeffrey W. Sleight
  • Publication number: 20120286377
    Abstract: Improved nano-electromechanical system devices and structures and systems and techniques for their fabrication. In one embodiment, a structure comprises an underlying substrate separated from first and second anchor points by first and second insulating support points, respectively. The first and second anchor points are joined by a beam. First and second deposition regions overlie the first and second anchor points, respectively, and the first and second deposition regions exert compression on the first and second anchor points, respectively. The compression on the first and second anchor points causes opposing forces on the beam, subjecting the beam to a tensile stress. The first and second deposition regions suitably exhibit an internal tensile stress having an achievable maximum varying with their thickness, so that the tensile stress exerted on the beam depends at least on part on the thickness of the first and second deposition regions.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Sebastian U. Engelmann, Michael A. Guillorn, Fei Liu, Conal E. Murray
  • Patent number: 8309991
    Abstract: A device is provided and includes a nanowire connecting first and second silicon-on-insulator (SOI) pads and a gate including a gate conductor surrounding the nanowire and a fully silicided material surrounding the gate conductor to radially strain the nanowire.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy Cohen, Conal E. Murray, Jeffrey W. Sleight
  • Publication number: 20120280211
    Abstract: Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: International Business Machines Corporation
    Inventors: Guy Cohen, Conal E. Murray, Michael J. Rooks