Patents by Inventor Conal E. Murray

Conal E. Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7386817
    Abstract: A method of determining a stopping power of a design structure with respect to a traveling particle. The method includes (i) providing design information of the design structure comprising a back-end-of-line layer which includes N interconnect layers, N being a positive integer, (ii) dividing each interconnect layer of the N interconnect layers into multiple pixels, and (iii) determining a first path of the traveling particle in a first interconnect layer of the N interconnect layers, (iv) identifying M path pixels of the multiple pixels of the first interconnect layer on the first path of the traveling particle, M being a positive integer, and (v) determining a first loss energy lost by the traveling particle due to its completely passing through a first pixel of the M path pixels.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: June 10, 2008
    Assignee: International Business Machines Corporation
    Inventors: Giovanni Fiorenza, Conal E. Murray, Kenneth P. Rodbell, Henry Tang
  • Patent number: 7371684
    Abstract: A process for preparing an electronics structure involves coating a substrate stack with a sacrificial multilayer hardmask stack, developing a pattern in a resist layer coated on a topmost layer of the multilayer hardmask stack, transferring the pattern into the hardmask stack, blocking a portion of the pattern, and then transferring an unblocked portion of the pattern into the substrate stack. Electronics structures prepared with the process are useful to prepare electronics devices, such as computers and the like. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader quickly to ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the appended issued claims.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthew Earl Colburn, Ricardo Alves Donaton, Conal E. Murray, Satyanarayana Venkata Nitta, Sampath Purushothaman, Sujatha Sankaran, Theodorus Eduardus Fransiscus Maria Standaert, Xiao Hu Liu
  • Publication number: 20070275548
    Abstract: A semiconductor structure in which the contact resistance in the contact opening is reduced as well as a method of forming the same are provided. This is achieved in the present invention by replacing conventional contact metallurgy, such as tungsten, or a metal silicide, such as Ni silicide or Cu silicide, with a metal germanide-containing contact material. The term “metal germanide-containing” is used in the present application to denote a pure metal germanide (i.e., MGe alloy) or a metal germanide that includes Si (i.e., MSiGe alloy).
    Type: Application
    Filed: May 24, 2006
    Publication date: November 29, 2007
    Applicant: International Business Machines Corporation
    Inventors: Christian Lavoie, Conal E. Murray, Kenneth P. Rodbell
  • Patent number: 7298639
    Abstract: A electrically blowable fuse is programmed using an electro-migration effect and is reprogrammed using a reverse electro-migration effect. The state (i.e., “opened” or “closed”) of the electrically blowable fuse is determined by a sensing system which compares a resistance of the electrically blowable fuse to a reference resistance.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Louis C. Hsu, Conal E. Murray, Chandrasekhar Narayan, Chih-Chao Yang
  • Patent number: 7214548
    Abstract: A method, apparatus, and computer program product for flattening a warped substrate. The substrate is placed on a planar surface of a clamping apparatus in direct mechanical contact with the planar surface. The substrate comprises surface regions S1, S2, . . . , SN having an average warpage of W1, W2, . . . , WN, respectively, wherein W1?W2? . . . ?WN and W1?WN. Zones Z1, Z2, . . . , ZN of the planar surface respectively comprise vacuum port groups G1, G2, . . . , GN. Each group comprises at least one vacuum port. N is at least 2. A vacuum pressure PV1, PV2, . . . , PVN is generated at each vacuum port within group G1, G2, . . . , GN, at a time of T1, T2, . . . , TN to clamp surface region S1, S2, . . . , SN to zone Z1, Z2, . . . , ZN, respectively. The vacuum pressure PV1, PV2, . . . , PVN is maintained at the vacuum ports of group G1, G2, . . . , GN, respectively, until time TN+1. T1<T2< . . . <TN<TN+1.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: May 8, 2007
    Assignee: International Business Machines Corporation
    Inventors: Mohammed F. Fayaz, Steffen K. Kaldor, Conal E. Murray, Ismail C. Noyan, Anne L. Petrosky
  • Patent number: 7166913
    Abstract: A structure and method are disclosed for heat dissipation relative to a heat generating element in a semiconductor device. The structure includes a plurality of heat transmitting lines partially vertically coincidental with the heat generating element, and at least one interconnecting path from each heat transmitting line to a substrate of the semiconductor device. In one embodiment, the heat generating element includes a resistor in a non-first metal level. The invention is compatible with conventional BEOL interconnect schemes, minimizes the amount of heat transfer from the resistor to the surrounding interconnect wiring, thus eliminating the loss of current carrying capability in the wiring.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 23, 2007
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Lawrence A. Clevenger, Tom C. Lee, Gerald Matusiewicz, Conal E. Murray, Chih-Chao Yang
  • Publication number: 20070004205
    Abstract: The present invention provides a method for producing thin nickel (Ni) monosilicide or NiSi films (having a thickness on the order of about 30 nm or less), as contacts in CMOS devices wherein an amorphous Ni alloy silicide layer is formed during annealing which eliminates (i.e., completely by-passing) the formation of metal-rich silicide layers. By eliminating the formation of the metal-rich silicide layers, the resultant NiSi film formed has improved surface roughness as compared to a NiSi film formed from a metal-rich silicide phase. The method of the present invention also forms Ni monosilicide films without experiencing any dependence of the dopant type concentration within the Si-containing substrate that exists with the prior art NiSi films.
    Type: Application
    Filed: July 1, 2005
    Publication date: January 4, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christophe Detavernier, Simon Gaudet, Christian Lavoie, Conal E. Murray
  • Patent number: 7067902
    Abstract: Stacked via pillars, such as metal via pillars, are provided at different and designated locations in IC chips to support the chip structure during processing and any related processing stresses such as thermal and mechanical stresses. These stacked via pillars connect and extend from a base substrate of the strip to a top oxide cap of the chip. The primary purpose of the stacked via pillars is to hold the chip structure together to accommodate any radial deformations and also to relieve any stress, thermal and/or mechanical, build-up during processing or reliability testing. The stacked via pillars are generally not electrically connected to any active lines or vias, however in some embodiments the stacked via pillars can provide an additional function of providing an electrical connection in the chip.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: June 27, 2006
    Assignee: International Business Machines Corporation
    Inventors: Habib Hichri, Xiao H. Liu, Vincent J. McGahay, Conal E. Murray, Jawahar P. Nayak, Thomas M. Shaw
  • Patent number: 6972209
    Abstract: A multilevel semiconductor integrated circuit (IC) structure including a first interconnect level including a layer of dielectric material over a semiconductor substrate, the layer of dielectric material comprising a dense material for passivating semiconductor devices and local interconnects underneath; multiple interconnect layers of dielectric material formed above the layer of dense dielectric material, each layer of dielectric material including at least a layer of low-k dielectric material; and, a set of stacked via-studs in the low-k dielectric material layers, each of said set of stacked via studs interconnecting one or more patterned conductive structures, a conductive structure including a cantilever formed in the low-k dielectric material.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Birendra N. Agarwala, Conrad A. Barile, Hormazdyar M. Dalal, Brett H. Engle, Michael Lane, Ernest Levine, Xiao Hu Liu, Vincent McGahay, John F. McGrath, Conal E. Murray, Jawahar P. Nayak, Du B. Nguyen, Hazara S. Rathore, Thomas M. Shaw
  • Patent number: 6768111
    Abstract: A method of measurement of topographic features on a surface of a substrate is presented, wherein a focused beam of particles falls onto the surface of the substrate, and backscattered particles are detected with a particle detector. An opaque material is interposed between the surface and the detector, and the position of the shadow of an edge of the opaque material on the detector is recorded. The relative position of the edge and the surface of the substrate is then determined, and the topography of the surface determined as the particle beam and the substrate are moved with respect to one another.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: July 27, 2004
    Assignee: International Business Machines Corp.
    Inventors: Oliver C. Wells, Lynne M. Gignac, Jonathan L. Rullan, Conal E. Murray
  • Publication number: 20040101663
    Abstract: A multilevel semiconductor integrated circuit (IC) structure including a first interconnect level including a layer of dielectric material over a semiconductor substrate, the layer of dielectric material comprising a dense material for passivating semiconductor devices and local interconnects underneath; multiple interconnect layers of dielectric material formed above the layer of dense dielectric material, each layer of dielectric material including at least a layer of low-k dielectric material; and, a set of stacked via-studs in the low-k dielectric material layers, each of said set of stacked via studs interconnecting one or more patterned conductive structures, a conductive structure including a cantilever formed in the low-k dielectric material.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Birendra N. Agarwala, Conrad A. Barile, Hormazdyar M. Dalal, Brett H. Engel, Michael Lane, Ernest Levine, Xiao Hu Liu, Vincent McGahay, John F. McGrath, Conal E. Murray, Jawahar P. Nayak, Du B. Nguyen, Hazara S. Rathore, Thomas M. Shaw