Patents by Inventor Craig Betts

Craig Betts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093300
    Abstract: A method of processing an input sample, as well as related kits and compositions, is provided herein.
    Type: Application
    Filed: June 20, 2021
    Publication date: March 21, 2024
    Inventors: Craig BETTS, Gordon CANN, Byoungsok JUNG, Nathan HUNKAPILLER
  • Patent number: 11884963
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 11845986
    Abstract: This disclosure provides methods and compositions for removing one or more high abundance species from a plurality of nucleic acid molecules. In some embodiments, the methods and compositions can be used for normalizing nucleic acid libraries. In some embodiments, molecular labels are used in conjunction with the methods and compositions disclosed herein to improve sequencing efficiency.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: December 19, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: Eleen Shum, Glenn Fu, Craig Betts
  • Publication number: 20230257735
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: November 4, 2022
    Publication date: August 17, 2023
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Publication number: 20220333185
    Abstract: The disclosure provides for methods, compositions, systems, devices, and kits for whole transcriptome amplification using stochastic barcodes.
    Type: Application
    Filed: March 1, 2022
    Publication date: October 20, 2022
    Inventors: Glenn Fu, Craig Betts, Christina Fan, Gretchen Yinbon Lam
  • Patent number: 11390914
    Abstract: The disclosure provides for methods, compositions, systems, devices, and kits for whole transcriptome amplification using stochastic barcodes.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 19, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Glenn Fu, Craig Betts, Christina Fan, Gretchen Yinbon Lam
  • Publication number: 20220154275
    Abstract: Methods for preparing a sequencing library from a DNA-containing test sample are provided. In some embodiments, the methods involve rescuing a partially ligated DNA fragment to enhance library preparation conversion efficiencies. In some embodiments, the methods involve improving recovery of duplex sequence information from double-stranded DNA.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 19, 2022
    Inventors: Craig Betts, Byoungsok Jung
  • Patent number: 11332776
    Abstract: The disclosure provides for methods, compositions, and kits for normalizing nucleic acid libraries, for example sequencing libraries.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 17, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Craig Betts, Glenn Fu
  • Patent number: 11274344
    Abstract: Methods for preparing a sequencing library from a DNA-containing test sample are provided. In some embodiments, the methods involve rescuing a partially ligated DNA fragment to enhance library preparation conversion efficiencies. In some embodiments, the methods involve improving recovery of duplex sequence information from double-stranded DNA.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 15, 2022
    Assignee: GRAIL, Inc.
    Inventors: Craig Betts, Byoungsok Jung
  • Publication number: 20210381042
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template nucleic acid, a template switch oligonucleotide, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template nucleic acid and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid including a region polymerized from the dNTPs by the polymerase. The methods further include attaching sequencing platform adapter constructs to ends of the product nucleic acid or a derivative thereof. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 9, 2021
    Inventors: Craig Betts, Andrew Alan Farmer
  • Patent number: 11124828
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template nucleic acid, a template switch oligonucleotide, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template nucleic acid and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid including a region polymerized from the dNTPs by the polymerase. The methods further include attaching sequencing platform adapter constructs to ends of the product nucleic acid or a derivative thereof. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: September 21, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Andrew Alan Farmer
  • Publication number: 20210238655
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Publication number: 20210222236
    Abstract: Provided are methods of producing a product nucleic acid. The methods include combining a template deoxyribonucleic acid (DNA), a polymerase, a template switch oligonucleotide, and dNTPs into a reaction mixture. The components are combined into the reaction mixture under conditions sufficient to produce a product nucleic acid that includes the template DNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Craig Betts, Andrew Alan Farmer, Nathalie Bolduc
  • Publication number: 20210155922
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 27, 2021
    Inventors: Craig Betts, Steve Oh, George Jokhadze, Nathalie Bolduc
  • Patent number: 11001882
    Abstract: Provided are methods of producing a product nucleic acid. The methods include combining a template deoxyribonucleic acid (DNA), a polymerase, a template switch oligonucleotide, and dNTPs into a reaction mixture. The components are combined into the reaction mixture under conditions sufficient to produce a product nucleic acid that includes the template DNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 11, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Andrew Alan Farmer, Nathalie Bolduc
  • Patent number: 10988796
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 27, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 10954510
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 23, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Patent number: 10941397
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 9, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George Jokhadze, Nathalie Bolduc
  • Publication number: 20210002633
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: August 13, 2020
    Publication date: January 7, 2021
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Patent number: 10781443
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 22, 2020
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc