Patents by Inventor Craig N. Faller

Craig N. Faller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170172614
    Abstract: A surgical instrument includes an end effector and a handle assembly. The end effector is configured to operate at a first energy level and at a second energy level. The end effector is further configured to transition between an open position and a closed position. The end effector is configured to grasp tissue in the closed position. The handle assembly includes a body, a trigger, and an activation element. The trigger is configured to pivot in a first direction relative to the body to actuate the end effector from the open position to the closed position. The activation element is configured to activate the end effector at either the first energy level or the second energy level. The trigger is configured to either activate the activation element or determine whether the end effector operates at the first energy level or the second energy level.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Charles J. Scheib, Benjamin M. Boyd, Paul F. Riestenberg, Craig N. Faller, Allison Hamilton, Patrick J. Swindon, Christopher J. Chermside-Scabbo, Kevin L. Houser, David J. Cagle, Geoffrey S. Strobl, Benjamin J. Danziger, Rudolph H. Nobis
  • Publication number: 20170172615
    Abstract: An apparatus includes a shaft assembly and an end effector. The shaft assembly includes a first coupling member and a second coupling member. The first coupling member and the second coupling member are configured to flex toward each other from a first position to a second position. The first coupling member and the second coupling member define a pivot axis in the first position. The end effector includes an ultrasonic blade and a clamp arm. The clamp arm is configured to couple or decouple with the shaft assembly when the first coupling member and the second coupling member are in the second position. The clamp arm is configured to pivot toward and away the ultrasonic blade about the pivot axis when the first coupling member and the second coupling member are in the first position.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: John A. Hibner, Richard C. Smith, Catherine A. Corbett, Craig N. Faller, David A. Witt
  • Publication number: 20170164973
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20170164997
    Abstract: An end effector of an instrument is positioned in a patient. An ultrasonic blade of the end effector is positioned against tissue in the patient. The ultrasonic blade is activated to vibrate ultrasonically while the ultrasonic blade is positioned against tissue. At least one electrode of the end effector is positioned against tissue in the patient. The at least one electrode is activated to apply RF electrosurgical energy to tissue against which the at least one electrode is positioned against tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Joseph Isosaki, Craig N. Faller, Shan Wan, Adam Brown, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Kai Chen, Matthew C. Miller, William E. Clem
  • Publication number: 20170056053
    Abstract: An ultrasonic instrument for use during a surgical procedure includes a body, a shaft assembly, an ultrasonic blade, and an actuation assembly. The body is configured to receive an ultrasonic transducer for selectively generating an oscillation at a first or a second predetermined power level. The shaft assembly projects from the body and includes an acoustic waveguide connected to the ultrasonic blade. The actuation assembly includes a selector collar generally surrounding the body and a plurality of activation buttons disposed radially about the body proximate to the selector collar. The selector collar is selectively movable along the body between a first position and a second position for selecting between the first and second predetermined power levels. The plurality of activation buttons are configured to direct the ultrasonic blade to oscillate with the selected first or second predetermined power levels.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin D. Dickerson, Tylor C. Muhlenkamp, Paul F. Riestenberg, Kristen G. Denzinger, Craig N. Faller, Chester O. Baxter, III
  • Publication number: 20170056051
    Abstract: An ultrasonic instrument includes a body, an actuation assembly, a shaft assembly, an ultrasonic blade, and a mechanical lockout. The body is configured to receive an ultrasonic transducer. The actuation assembly includes an activation lever that is configured to move from a first activation position toward the longitudinal axis to a second activation position. The activation lever is oriented obliquely relative the longitudinal axis in the second activation position. The shaft assembly includes an acoustic waveguide. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The activation lever is operable to trigger ultrasonic activation of the ultrasonic blade by moving to the second activation position. The mechanical lockout is operable to selectively restrict movement of the first activation lever to the second activation position.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 2, 2017
    Inventors: Benjamin D. Dickerson, Craig N. Faller
  • Publication number: 20170000552
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a selector switch having a plurality of surgical modes. A generator is electrically coupled to the surgical instrument and is configured to deliver energy to the end effector. Each surgical mode of the selector switch corresponds to an algorithm for controlling the power delivered from the generator to the end effector, and each algorithm corresponding to the plurality of surgical modes is configured to allow a user to control the power output level of the generator.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Ryan M. Asher, Craig N. Faller, Charles J. Scheib, Paul F. Riestenberg, Jacob S. Gee, Benjamin M. Boyd, Benjamin D. Dickerson, Rafael J. Ruiz Ortiz, William B. Weisenburgh, II, Thomas C. Gallmeyer, John A. Hibner
  • Publication number: 20160302812
    Abstract: A surgical apparatus comprises a body, an ultrasonic transducer, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation lock assembly. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The shaft couples the end effector and the body together. The acoustic waveguide is coupled with the transducer and includes a flexible portion. The articulation section is coupled with the shaft and encompasses the flexible portion of the waveguide. The articulation section comprises a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector comprises an ultrasonic blade in acoustic communication with the ultrasonic transducer. The articulation lock comprises a tensioning feature, which is configured to selectively apply tension to at least one of the first member and the second member of the articulation section to thereby increase rigidity in the articulation section.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: David A. Monroe, Richard W. Timm, Craig N. Faller, Kristen L. Pirozzi, Jacob S. Gee, Jeffrey D. Messerly, John B. Schulte, Benjamin D. Dickerson, Ryan M. Asher, Cara L. Shapiro
  • Publication number: 20160302818
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. Pirozzi, II, Craig N. Faller, John B. Schulte, Kristen Denzinger, Joseph Hollo, Jason Sullivan, Brian Black, Frederick L. Estera, David A. Monroe, Stephen Leuck, Tylor C. Muhlenkamp, Gregory A. Trees
  • Publication number: 20160296252
    Abstract: Various embodiments described herein are directed to curved ultrasonic blades. For example, a curved ultrasonic blade may comprise a proximally positioned straight section and a distally positioned curved section. The curved ultrasonic blade may be positioned within a shaft extending along a longitudinal axis. The curved ultrasonic blade may be translatable relative to the shaft. The curved section of the curved ultrasonic blade may translate from a first position where the curved section is at least partially contained within the shaft to a second position where the curved section curves away from the longitudinal axis. The curved section may define a radius of curvature that increases as the curved section curves away from the longitudinal axis. In another example, the curved ultrasonic blade may comprise a proximally positioned first curved section and a distally positioned second curved section. The curvature of the first curved section may be opposite of the curvature of the second curved section.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 13, 2016
    Inventors: William A. Olson, Foster B. Stulen, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
  • Publication number: 20160296251
    Abstract: The present disclosure is directed to end effectors. An end effector includes an outer shaft extending along a longitudinal axis and an inner shaft partially located within the outer shaft. The end effector may include an ultrasonic blade. The inner shaft may include biased and unbiased portions. The inner shaft and outer shaft may be translatable relative to one another. At one translatable position, the biased portion of the inner shaft may be located within the outer shaft and the unbiased portion may be substantially straight along the longitudinal axis. At another translatable position, the biased portion of the inner shaft may be located outside of and distally positioned from the outer shaft such that the biased portion of the inner shaft is bent away from the longitudinal axis.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 13, 2016
    Inventors: William A. Olson, Foster B. Stulen, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
  • Publication number: 20160296250
    Abstract: Various embodiments described herein are directed to ultrasonic blades. For example, an ultrasonic blade may comprise a proximally positioned straight section extending along a longitudinal axis and a distally positioned curved section coupled to the straight section and curved away from the longitudinal axis. The curved section may define a radius of curvature and subtend a first angle. A point of tangency between the curved section and the straight section may be positioned at either a node of the ultrasonic blade or an anti-node of the ultrasonic blade.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 13, 2016
    Inventors: William A. Olson, Foster B. Stulen, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
  • Publication number: 20160175001
    Abstract: A surgical apparatus comprises a body, a shaft assembly, and an end effector. The end effector comprises a clamp arm and an ultrasonic blade in acoustic communication with an ultrasonic transducer via an acoustic waveguide that extends through the shaft assembly. The clamp arm is configured to pivot about a first pivot point toward and away from the ultrasonic blade along a first angular path from a first position to a second position to thereby provide a tissue sealing mode of operation. The clamp arm is further configured to pivot about a second pivot point toward and away from the ultrasonic blade along second angular path from the second position to a third position to thereby provide a tissue cutting and sealing mode of operation. The second pivot point is proximal to the first pivot point.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 23, 2016
    Inventors: John A. Hibner, Jeffrey D. Messerly, Richard W. Timm, Paul F. Riestenberg, Craig N. Faller, Richard C. Smith, David A. Witt, Benjamin D. Dickerson
  • Publication number: 20160095617
    Abstract: An end effector of a surgical instrument may generally comprise a blade, and a clamp arm assembly comprising a clamp arm movable between an open position and a closed position relative to the blade, and at least one camming member rotationally attached to the clamp arm, wherein the at least one camming member is configured to rotate relative to the blade as the clamp arm moves from the open position to the closed position.
    Type: Application
    Filed: December 9, 2015
    Publication date: April 7, 2016
    Inventors: Daniel W. Price, Jeffrey D. Messerly, Prasanna Malaviya, Robert J. Beetel, III, Timothy G. Dietz, David A. Witt, Douglas J. Turner, David K. Norvell, Kip M. Rupp, John A. Weed, III, Kevin D. Felder, Kevin L. Houser, Paul T. Franer, Craig N. Faller, Craig T. Davis
  • Patent number: 9283045
    Abstract: Various surgical instruments are disclosed. At least one surgical instrument includes an instrument mounting portion configured to mount to a robotic surgical system. The instrument mounting portion includes an interface to mechanically and electrically interface to the surgical instrument adapted for use with the robotic surgical system. A fluid management system is contained within the instrument mounting portion. The fluid management system includes a first container to contain a first fluid agent to be dispensed.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: March 15, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Sora Rhee, Foster B. Stulen, Kevin L. Houser, Craig N. Faller
  • Publication number: 20160030076
    Abstract: An ultrasonic surgical instrument includes an inner tube, an outer tube, an ultrasonic blade, and a clamp member pivotably moveable relative to the ultrasonic blade. The ultrasonic blade is acoustically coupled to an ultrasonic transducer. The clamp member pivotably movable relative to the ultrasonic blade between an open configuration and an approximated configuration with respect to the ultrasonic blade, wherein the clamp member is pivotably coupled to the inner tube, wherein the clamp member is pivotably coupled to the outer tube, and wherein movement of the outer tube relative to the inner tube between the first position and the second position transitions the clamp member between the open configuration and the approximate configuration.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Craig N. Faller, Jacob S. Gee, Paul F. Riestenberg, Jonathan T. Batross, David A. Monroe, Benjamin D. Dickerson, Jeffrey D. Messerly
  • Patent number: 9241728
    Abstract: A nested trigger assembly for a surgical instrument may generally comprise a first trigger and a second trigger, wherein the first trigger and the second trigger are movable together on a first stroke of the nested trigger assembly, wherein the second trigger is configured to be biased away from the first trigger after the first stroke and before a second stroke, and wherein the second trigger is configured to be moved toward to the first trigger during the second stroke. A surgical instrument may generally comprise a shaft comprising a proximal end and a distal end, a handle extending from the proximal end, wherein the handle comprises a gripping portion, and a nested trigger assembly extending from the handle. The nested trigger assemble may comprise one of a separable trigger assembly and a divisible trigger assembly.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 26, 2016
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Daniel W. Price, Jeffrey D. Messerly, Prasanna Malaviya, Robert J. Beetel, III, Timothy G. Dietz, David A. Witt, Douglas J. Turner, David K. Norvell, John A. Weed, III, Kevin D. Felder, Kevin L. Houser, Paul T. Franer, Craig N. Faller, Craig T. Davis
  • Publication number: 20150320438
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: William B. Weisenburgh, II, Willliam A. Olson, Foster B. Stulen, Barry C. Worrell, David A. Monroe, Jeffrey L. Aldridge, Benjamin D. Dickerson, Craig N. Faller, William D. Fox, Michael J. Stokes
  • Publication number: 20150320437
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. Pirozzi, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Publication number: 20150164538
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising a waveguide, and end effector and an electrical switch. The waveguide may comprise a proximal end and a distal end, wherein the proximal end is configured to couple to an ultrasonic transducer and one output of a radio frequency (RF) generator. The end effector may comprise an ultrasonic blade and a clamp arm coupled. The ultrasonic blade may be mechanically coupled to the distal end of the waveguide and electrically coupled to the waveguide. The clamp arm may comprise a movable jaw member electrically coupled to another output of the RF generator such that an electrical current can pass through the movable jaw member and the ultrasonic blade through tissue located between the movable jaw member and the ultrasonic blade.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Jeffrey L. Aldridge, Craig N. Faller, Kevin D. Felder, Jacob S. Gee, William D. Kelly, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Scott A. Nield, Daniel W. Price, Patrick J. Scoggins, John B. Schulte, Geoffrey S. Strobl, James W. Voegele, John A. Weed, III, William B. Weisenburgh, II, Patrick A. Weizman, John W. Willis