Patents by Inventor Cyprian Uzoh

Cyprian Uzoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120326326
    Abstract: Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a co-planar or flat top surface. Another feature is a method of forming an interconnect structure that results in the interconnect structure having a surface that is angled upwards greater than zero with respect to a top surface of the substrate. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed
  • Publication number: 20120319282
    Abstract: Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a top surface and portions of the side walls of the interconnect structure covered in a dissimilar material. In some embodiments, the dissimilar material can be a conductive material or a nano-alloy. The interconnect structure can be formed by removing a portion of the interconnect structure, and covering the interconnect structure with the dissimilar material. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: Tessera, Inc.
    Inventors: Cyprian Uzoh, Belgacem Haba, Craig Mitchell
  • Publication number: 20120267789
    Abstract: A microelectronic unit can include a substrate having front and rear surfaces and active semiconductor devices therein, the substrate having a plurality of openings arranged in a symmetric or asymmetric distribution across an area of the rear surface, first and second conductive vias connected to first and second pads exposed at the front surface, pluralities of first and second conductive interconnects extending within respective ones of the openings, and first and second conductive contacts exposed for interconnection with an external element. The plurality of first conductive interconnects can be separated from the plurality of second conductive interconnects by at least one of the plurality of openings, the at least one opening at least partially filled with an insulating material. The distribution of the openings can include at least m openings spaced apart in a first direction and n openings spaced apart in a second direction transverse to the first direction.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 25, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Uzoh, Piyush Savalia
  • Publication number: 20120181658
    Abstract: A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
    Type: Application
    Filed: July 14, 2011
    Publication date: July 19, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Uzoh, Piyush Savalia, Vage Oganesian
  • Patent number: 7491308
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: February 17, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7476304
    Abstract: Deposition of conductive material on or removal of conductive material from a workpiece frontal side of a semiconductor workpiece is performed by providing an anode having an anode area which is to face the workpiece frontal side, and electrically connecting the workpiece frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the workpiece frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the workpiece is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the workpiece frontal side surface, in its entirety, is thus permitted.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: January 13, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Jalal Ashjaee, Boguslaw Nagorski, Bulent M. Basol, Homayoun Talieh, Cyprian Uzoh
  • Patent number: 7378004
    Abstract: An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 27, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian Uzoh, Bulent Basol, Homayoun Talieh
  • Patent number: 7329335
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 12, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7311811
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 25, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7309413
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: December 18, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7282124
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: October 16, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Publication number: 20070135022
    Abstract: The present invention provides an apparatus for wet processing of a conductive layer using a degassed process solution such as a degassed electrochemical deposition solution, a degassed electrochemical polishing solution, a degassed deposition solution, and a degassed cleaning solution. The technique includes degassing the process solution before delivering the degassed process solution to a processing unit or degassing the process solution in situ, within the processing unit.
    Type: Application
    Filed: February 9, 2007
    Publication date: June 14, 2007
    Inventors: Bulent Basol, Cyprian Uzoh
  • Patent number: 7201829
    Abstract: The present invention includes a mask plate design that includes at least one or a plurality of channels portions on a surface of the mask plate, into which electrolyte solution will accumulate when the mask plate surface is disposed on a surface of wafer, and out of which the electrolyte solution will freely flow. There are also at least one or a plurality of polish portions on the mask plate surface that allow for polishing of the wafer when the mask plate surface is disposed on a surface of wafer.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: April 10, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Cyprian Uzoh, Jeff A. Bogart
  • Publication number: 20070066054
    Abstract: A method is provided for manufacturing removable contact structures on the surface of a substrate to conduct electricity from a contact member to the surface during electroprocessing. The method comprises forming a conductive layer on the surface. A predetermined region of the conductive layer is selectively coated by a contact layer so that the contact member touches the contact layer as the electroprocessing is performed on the conductive layer.
    Type: Application
    Filed: September 21, 2005
    Publication date: March 22, 2007
    Inventors: Cyprian Uzoh, Bulent Basol, Hung-Ming Wang, Homayoun Talieh
  • Publication number: 20060219573
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a semiconductor substrate by rotating pad or blade type objects in close proximity to the substrate, thereby eliminating/reducing dishing and voids. This is achieved by providing pad or blade type objects mounted on cylindrical anodes or rollers and applying the conductive material to the substrate using the electrolyte solution disposed on or through the pads, or on the blades. In one embodiment of the invention, the pad or blade type objects are mounted on the cylindrical anodes and rotated about a first axis while the workpiece may be stationary or rotate about a second axis, and metal from the electrolyte solution is deposited on the workpiece when a potential difference is applied between the workpiece and the anode. In another embodiment of the present invention, the plating apparatus includes an anode plate spaced apart from the cathode workpiece.
    Type: Application
    Filed: June 1, 2006
    Publication date: October 5, 2006
    Inventors: Cyprian Uzoh, Homayoun Talieh, Bulent Basol, Douglas Young
  • Publication number: 20060118425
    Abstract: A layer structure usable in manufacturing an integrated circuit is made, in a single apparatus, by a particular process in which a patterned substrate is provided. An electrolyte solution, out of which a conductive material can be plated under an applied potential, is supplied over a surface of the patterned substrate, and a potential is applied so as to deposit a film of the conductive material out of the electrolyte solution and over the surface of the patterned substrate. The film of conductive material is preferably polished as it is deposited. The conductive material is then removed from field regions of the patterned substrate, while deposits of the conductive material are left in features defined in the patterned substrate. The deposits of the conductive material are then electrically isolated, resulting in the layer structure.
    Type: Application
    Filed: January 30, 2006
    Publication date: June 8, 2006
    Inventors: Bulent Basol, Cyprian Uzoh, Homayoun Talieh
  • Publication number: 20060070885
    Abstract: The present invention relates to a method for fabricating high performance chip interconnects and packages by providing methods for depositing a conductive material in cavities of a substrate in a more efficient and time saving manner. This is accomplished by selectively removing portions of a seed layer from a top surface of a substrate and then depositing a conductive material in the cavities of the substrate, where portions of the seed layer remains in the cavities. Another method includes forming an oxide layer on the top surface of the substrate such that the conductive material can be deposited in the cavities without the material being formed on the top surface of the substrate. The present invention also discloses methods for forming multi-level interconnects and the corresponding structures.
    Type: Application
    Filed: December 6, 2005
    Publication date: April 6, 2006
    Inventors: Cyprian Uzoh, Homayoun Talieh, Bulent Basol
  • Publication number: 20060017169
    Abstract: A process is described for the fabrication of submicton interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of CU electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 26, 2006
    Applicant: International Business Machines Corporation
    Inventors: Panayotis Andricacos, Hariklia Deligianni, John Dukovic, Daniel Edelstein, Wilma Horkans, Chao-Kun Hu, Jeffrey Hurd, Kenneth Rodbell, Cyprian Uzoh, Kwong-Hon Wong
  • Publication number: 20060011485
    Abstract: The present invention relates to a method for forming a planar conductive surface on a wafer. In one aspect, the present invention uses a no-contact process with electrochemical deposition, followed by a contact process with electrochemical mechanical deposition.
    Type: Application
    Filed: September 20, 2005
    Publication date: January 19, 2006
    Inventors: Bulent Basol, Cyprian Uzoh, Homayoun Talieh
  • Publication number: 20060009033
    Abstract: The process of the present invention forms copper interconnects in a semiconductor wafer surface. During the process, initially, narrow and large features are provided in the top surface of the wafer, and then a primary copper layer is deposited by employing an electrochemical deposition process. The primary copper layer completely fills the features and forms a planar surface over the narrow feature and a non-planar surface over the large feature. By employing an electrochemical mechanical deposition process, a secondary copper layer is deposited onto the primary copper layer to form a planar copper layer over the narrow and large features. After this process step, the thickness of the planar copper layer is reduced using an electropolishing process.
    Type: Application
    Filed: September 13, 2005
    Publication date: January 12, 2006
    Inventors: Bulent Basol, Cyprian Uzoh