Patents by Inventor Cyril Cabral

Cyril Cabral has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120228773
    Abstract: A layered structure and semiconductor device and methods for fabricating a layered structure and semiconductor device. The layered structure includes: a base layer including a material containing titanium nitride, tantalum nitride, or a combination thereof; a conductive layer including a material containing: tantalum aluminum nitride, titanium aluminum nitride, tantalum silicon nitride, titanium silicon nitride, tantalum hafnium nitride, titanium hafnium nitride, hafnium nitride, hafnium carbide, tantalum carbide, vanadium nitride, niobium nitride, or any combination thereof; and a tungsten layer. The semiconductor device includes: a semiconductor substrate; a base layer; a conductive layer; and a tungsten layer.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen L. Brown, John Bruley, Cyril Cabral, JR., Sandro Callegari, Martin M. Frank, Michael A. Guillorn, Marinus Hopstaken, Vijay Narayanan, Keith Kwong Hon Wong
  • Patent number: 8247271
    Abstract: A structure fabrication method. First, an integrated circuit including N chip electric pads is provided electrically connected to a plurality of devices on the integrated circuit. Then, an interposing shield having a top side and a bottom side and having N electric conductors in the interposing shield is provided being exposed to a surrounding ambient at the top side but not at the bottom side. Next, the integrated circuit is bonded to the top side of the interposing shield such that the N chip electric pads are in electrical contact with the N electric conductors. Next, the bottom side of the interposing shield is polished so as to expose the N electric conductors to the surrounding ambient at the bottom side of the interposing shield. Then, N solder bumps are formed on the polished bottom side of the interposing shield and in electrical contact with the N electric conductors.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Paul Stephen Andry, Cyril Cabral, Jr., Kenneth P. Rodbell, Robert L. Wisnieff
  • Patent number: 8212218
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Patent number: 8193051
    Abstract: The present invention provides a semiconductor structure including a semiconductor substrate having a plurality of source and drain diffusion regions located therein, each pair of source and drain diffusion regions are separated by a device channel. The structure further includes a first gate stack of pFET device located on top of some of the device channels, the first gate stack including a high-k gate dielectric, an insulating interlayer abutting the gate dielectric and a fully silicided metal gate electrode abutting the insulating interlayer, the insulating interlayer includes an insulating metal nitride that stabilizes threshold voltage and flatband voltage of the p-FET device to a targeted value and is one of aluminum oxynitride, boron nitride, boron oxynitride, gallium nitride, gallium oxynitride, indium nitride and indium oxynitride.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Cyril Cabral, Jr., Eduard A. Cartier, Matthew W. Copel, Martin M. Frank, Evgeni P. Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri
  • Publication number: 20120091589
    Abstract: The present disclosure relates to an improved method of providing a Ni silicide metal contact on a silicon surface by electrodepositing a Ni film on a silicon substrate. The improved method results in a controllable silicide formation wherein the silicide has a uniform thickness. The metal contacts may be incorporated in, for example, CMOS devices, MEM (micro-electro-mechanical) devices, and photovoltaic cells.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: CYRIL CABRAL, JR., JOHN M. COTTE, KATHRYN C. FISHER, LAURA L. KOSBAR, CHRISTIAN LAVOIE, ZHU LIU, XIAOYAN SHAO
  • Patent number: 8158449
    Abstract: A structure and a method for operating the same. The method includes providing a detecting structure which includes N detectors. N is a positive integer. A fabrication step is simultaneously performed on the detecting structure and M product structures in a fabrication tool resulting in a particle-emitting layer on the detecting structure. The detecting structure is different than the M product structures. The M product structures are identical. M is a positive integer. An impact of emitting particles from the particle-emitting layer on the detecting structure is analyzed after said performing is performed.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Jeff McMurray, Liesl M. McMurray, legal representative, Cristina Plettner, Paul Andrew Ronsheim
  • Patent number: 8154130
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: April 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Patent number: 8129267
    Abstract: An alpha particle blocking structure and method of making the structure. The structure includes: a semiconductor substrate; a set of interlevel dielectric layers stacked from a lowermost interlevel dielectric layer closest to the substrate to a uppermost interlevel dielectric layer furthest from the substrate, each interlevel dielectric layer of the set of interlevel dielectric layers including electrically conductive wires, top surfaces of the wires substantially coplanar with top surfaces of corresponding interlevel dielectric layers; an electrically conductive tot final pad contacting a wire pad of the uppermost interlevel dielectric layer; an electrically conductive plating base layer contacting a top surface of the terminal pad; and a copper block on the plating base layer.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., K. Paul Muller, Kenneth P. Rodbell
  • Patent number: 8125082
    Abstract: A method that solves the increased nucleation temperature that is exhibited during the formation of cobalt disilicides in the presence of Ge atoms is provided. The reduction in silicide formation temperature is achieved by first providing a structure including a Co layer including at least Ni, as an additive element, on top of a SiGe containing substrate. Next, the structure is subjected to a self-aligned silicide process which includes a first anneal, a selective etching step and a second anneal to form a solid solution of (Co, Ni) disilicide on the SiGe containing substrate. The Co layer including at least Ni can comprise an alloy layer of Co and Ni, a stack of Ni/Co or a stack of Co/Ni. A semiconductor structure including the solid solution of (Co, Ni) disilicide on the SiGe containing substrate is also provided.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: February 28, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Jia Chen, Christopher Detavernier, James M. Harper, Christian Lavoie
  • Publication number: 20120038056
    Abstract: The present disclosure provides a method of forming an interconnect to an electrical device. In one embodiment, the method of forming an interconnect includes providing a device layer on a substrate, wherein the device layer comprises at least one electrical device, an intralevel dielectric over the at least one electrical device, and a contact that is in electrical communication with the at least one electrical device. An interconnect metal layer is formed on the device layer, and a tantalum-containing etch mask is formed on a portion of the interconnect metal layer. The interconnect metal layer is etched to provide a trapezoid shaped interconnect in communication with the at least one electrical device. The trapezoid shaped interconnect has a first surface that is in contact with the device layer with a greater width than a second surface of the trapezoid shaped interconnect that is in contact with the tantalum-containing etch mask.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Sebastian U. Engelmann, Benjamin Fletcher, Eric A. Joseph, Satyanarayana V. Nitta
  • Publication number: 20120038048
    Abstract: A method of forming nickel monosilicide is provided that includes providing a silicon-containing surface, and ion implanting carbon into the silicon-containing surface. A nickel-containing layer is formed on the silicon-containing surface. Alloying the nickel-containing surface and the silicon-containing surface layer to provide a nickel monosilicide. The present disclosure also provides a non-agglomerated Ni monosilicide contact that includes a carbon interstitial dopant present in a concentration ranging from 1×1019 atoms/cm3 to 1×1021 atoms/cm3.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Benjamin Fletcher, Christian Lavoie, Zhen Zhang
  • Publication number: 20120028458
    Abstract: An alpha particle blocking structure and method of making the structure. The structure includes: a semiconductor substrate; a set of interlevel dielectric layers stacked from a lowermost interlevel dielectric layer closest to the substrate to a uppermost interlevel dielectric layer furthest from the substrate, each interlevel dielectric layer of the set of interlevel dielectric layers including electrically conductive wires, top surfaces of the wires substantially coplanar with top surfaces of corresponding interlevel dielectric layers; an electrically conductive terminal pad contacting a wire pad of the uppermost interlevel dielectric layer; an electrically conductive plating base layer contacting a top surface of the terminal pad; and a copper block on the plating base layer.
    Type: Application
    Filed: March 21, 2008
    Publication date: February 2, 2012
    Inventors: Cyril Cabral, JR., K. Paul Muller, Kenneth P. Rodbell
  • Patent number: 8101518
    Abstract: The present invention provides a method for forming a self-aligned Ni alloy silicide contact. The method of the present invention begins by first depositing a conductive Ni alloy with Pt and optionally at least one of the following metals Pd, Rh, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W or Re over an entire semiconductor structure which includes at least one gate stack region. An oxygen diffusion barrier comprising, for example, Ti, TiN or W is deposited over the structure to prevent oxidation of the metals. An annealing step is then employed to cause formation of a NiSi, PtSi contact in regions in which the metals are in contact with silicon. The metal that is in direct contact with insulating material such as SiO2 and Si3N4 is not converted into a metal alloy silicide contact during the annealing step A. selective etching step is then performed to remove unreacted metal from the sidewalls of the spacers and trench isolation regions.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: January 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael A. Cobb, Asa Frye, Balasubramanian S. Pranatharthi Haran, Randolph F. Knarr, Mahadevaiyer Krishnan, Christian Lavoie, Andrew P. Mansson, Renee T. Mo, Jay W. Strane, Horatio S. Wildman
  • Publication number: 20120009771
    Abstract: A method for formation of a segregated interfacial dopant layer at a junction between a semiconductor material and a silicide layer includes depositing a doped metal layer over the semiconductor material; annealing the doped metal layer and the semiconductor material, wherein the anneal causes a portion of the doped metal layer and a portion of the semiconductor material to react to form the silicide layer on the semiconductor material, and wherein the anneal further causes the segregated interfacial dopant layer to form between the semiconductor material and the silicide layer, the segregated interfacial dopant layer comprising dopants from the doped metal layer; and removing an unreacted portion of the doped metal layer from the silicide layer.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., John M. Cotte, Dinesh R. Koli, Laura L. Kosbar, Mahadevaiyer Krishnan, Christian Lavoie, Stephen M. Rossnagel, Zhen Zhang
  • Patent number: 8089157
    Abstract: A contact metallurgy structure comprising a patterned dielectric layer having vias on a substrate; a silicide layer of cobalt and/or nickel located at the bottom of vias; a contact layer comprising Ti located in vias on top of the silicide layer; a diffusion layer located in vias and on top of the contact layer; a metal fill layer in vias is provided along with a method of fabrication. The metal fill layer comprises at least one member selected from the group consisting of copper, ruthenium, rhodium platinum, palladium, iridium, rhenium, tungsten, gold, silver and osmium and alloys thereof. When the metal fill layer comprises rhodium, the diffusion layer is not required. Optionally a seed layer for the metal fill layer can be employed.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Hariklia Deligianni, Randolph F. Knarr, Sandra G. Malhotra, Stephen Rossnagel, Xiaoyan Shao, Anna Topol, Philippe M. Vereecken
  • Publication number: 20110309508
    Abstract: A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Kenneth P. Rodbell, Xiaoyan Shao
  • Publication number: 20110272009
    Abstract: A grid stack structure of a solar cell, which includes a silicon substrate, wherein a front side of the silicon is doped with phosphorus to form a n-emitter and a back side of the silicon is screen printed with aluminum (Al) metallization; a dielectric layer, which acts as an antireflection coating (ARC), applied on the silicon; a mask layer applied on the front side to define a grid opening of the dielectric layer, wherein an etching method is applied to open an unmasked grid area; a light-induced plated nickel or cobalt layer applied to the front side with electrical contact to the back side Al metallization; a silicide layer formed by rapid thermal annealing of the plated nickel (Ni) or cobalt (Co); an optional barrier layer electrodeposited on the silicide; a copper (Cu) layer electrodeposited on the silicide/barrier film layer; and a thin protective layer is chemically applied or electrodeposited on top of the Cu layer.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., Harold J. Hovel, Xiaoyan Shao
  • Patent number: 8039331
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Jr., Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Patent number: 8008199
    Abstract: Cobalt is added to a copper seed layer, a copper plating layer, or a copper capping layer in order to modify the microstructure of copper lines and vias. The cobalt can be in the form of a copper-cobalt alloy or as a very thin cobalt layer. The grain boundaries configured in bamboo microstructure in the inventive metal interconnect structure shut down copper grain boundary diffusion. The composition of the metal interconnect structure after grain growth contains from about 1 ppm to about 10% of cobalt in atomic concentration. Grain boundaries extend from a top surface of a copper-cobalt alloy line to a bottom surface of the copper-cobalt alloy line, and are separated from any other grain boundary by a distance greater than a width of the copper-cobalt alloy line.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brett C. Baker-O'Neal, Cyril Cabral, Jr., Qiang Huang, Kenneth P. Rodbell
  • Patent number: 7998842
    Abstract: The present invention provides metallic films containing a Group IVB or VB metal, silicon and optionally nitrogen by utilizing atomic layer deposition (ALD). In particularly, the present invention provides a low temperature thermal ALD method of forming metallic silicides and a plasma-enhanced atomic layer deposition (PE-ALD) method of forming metallic silicon nitride film. The methods of the present invention are capable of forming metallic films having a thickness of a monolayer or less on the surface of a substrate. The metallic films provided in the present invention can be used for contact metallization, metal gates or as a diffusion barrier.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Hyungjun Kim, Stephen M. Rossnagel