Patents by Inventor Dae-Lok Bae

Dae-Lok Bae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8319329
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Publication number: 20120132986
    Abstract: A semiconductor device includes a substrate having a plurality of horizontal channel transistors formed thereon, an insulation layer structure on the substrate and covering the horizontal transistors, and a plurality of vertical channel transistors on the insulation layer structure.
    Type: Application
    Filed: October 3, 2011
    Publication date: May 31, 2012
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Suk-Chul Bang, Byung-Lyul Park, Kwang-Jin Moon, Dong-Chan Lim, Deok-Young Jung
  • Publication number: 20120119383
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Publication number: 20120108034
    Abstract: Provided are a substrate structure which may solve problems generated in a manufacturing process while having a relatively low resistance buried wiring, a method for manufacturing the substrate structure, and a semiconductor device and a method for manufacturing the same using the substrate structure. The substrate structure may include a supporting substrate, an insulating layer disposed on the supporting substrate, a line-shaped conductive layer pattern disposed in the insulating layer to extend in a first direction, and a line-shaped semiconductor pattern disposed in the insulating layer and on the conductive layer pattern to extend in the first direction and having a top surface exposed to the outside of the insulating layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 3, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae-Lok Bae, Gil-Heyun Choi, Byung-Lyul Park, Pil-Kyu Kang
  • Publication number: 20120088323
    Abstract: A method for forming a light guide layer with improved transmission reliability in a semiconductor substrate, the method including forming a trench in the semiconductor substrate, forming a cladding layer and a preliminary light guide layer in the trench such that only one of opposite side end portions of the preliminary light guide layer is in contact with an inner sidewall of the trench, and performing a thermal treatment on the substrate to change the preliminary light guide layer into the light guide layer.
    Type: Application
    Filed: September 23, 2011
    Publication date: April 12, 2012
    Inventors: DAE-LOK BAE, Byung-Lyul Park, Pil-Kyu Kang, Gil-Heyun Choi, Kwang-Jin Moon
  • Patent number: 8129833
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Publication number: 20120052635
    Abstract: A conductive layer buried-type substrate is disclosed. The substrate includes a silicon oxidation layer bonded to a supporting substrate, an adhesion promotion layer that is formed on the silicon oxidation layer and improves an adhesion between the silicon oxidation layer and a conductive layer, wherein the conductive layer is formed on the adhesion promotion layer and comprises a metal layer, and a single crystal semiconductor layer formed on the conductive layer.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Inventors: Pil-kyu Kang, Gil-heyun Choi, Dae-lok Bae, Byung-Iyul Park, Dong-kak Lee
  • Publication number: 20110316168
    Abstract: A semiconductor device includes a via structure and a conductive structure. The via structure has a surface with a planar portion and a protrusion portion. The conductive structure is formed over at least part of the planar portion and not over at least part of the protrusion portion of the via structure. For example, the conductive structure is formed only onto the planar portion and not onto any of the protrusion portion for forming high quality connection between the conductive structure and the via structure.
    Type: Application
    Filed: October 27, 2010
    Publication date: December 29, 2011
    Inventors: Kwang-Jin Moon, Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Byung-Lyul Park, Dong-Chan Lim, Deok-Young Jung
  • Publication number: 20110250738
    Abstract: A method of forming a silicon based optical waveguide can include forming a silicon-on-insulator structure including a non-crystalline silicon portion and a single crystalline silicon portion of an active silicon layer in the structure. The non-crystalline silicon portion can be replaced with an amorphous silicon portion and maintaining the single crystalline silicon portion and the amorphous portion can be crystallized using the single crystalline silicon portion as a seed to form a laterally grown single crystalline silicon portion including the amorphous and single crystalline silicon portions.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 13, 2011
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Jong-Myeong Lee
  • Publication number: 20110223725
    Abstract: A method of manufacturing a buried wiring type substrate comprises implanting hydrogen ions into a single crystalline substrate through a first surface thereof to form an ion implantation region, forming a conductive layer comprising a metal on the first surface of the single crystalline substrate, forming an insulation layer comprising silicon oxide on the conductive layer, bonding the insulation layer to a support substrate to form a preliminary buried wiring type substrate, and separating the single crystalline substrate at the ion implantation region to form a single crystalline semiconductor layer on the conductive layer.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Kyu KANG, Dae-Lok BAE, Gil-Heyun CHOI, Jong-Myeong LEE
  • Publication number: 20110188828
    Abstract: A photo-electric integrated circuit device comprises an on-die optical input/output device. The on-die optical input/output device comprises a substrate having a trench, a lower cladding layer disposed in the trench and having an upper surface lower than an upper surface of the substrate, and a core disposed on the lower cladding layer at a distance from sidewalls of the trench and having an upper surface at substantially the same level as the upper surface of the substrate.
    Type: Application
    Filed: December 15, 2010
    Publication date: August 4, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Kyu KANG, Dae Lok BAE, Gil Heyun CHOI, Jong Myeong LEE
  • Publication number: 20110133063
    Abstract: Optical waveguide and coupler devices and methods include a trench formed in a bulk semiconductor substrate, for example, a bulk silicon substrate. A bottom cladding layer is formed in the trench, and a core region is formed on the bottom cladding layer. A reflective element, such as a distributed Bragg reflector can be formed under the coupler device and/or the waveguide device. Because the optical devices are integrated in a bulk substrate, they can be readily integrated with other devices on a chip or die in accordance with silicon photonics technology. Specifically, for example, the optical devices can be integrated in a DRAM memory circuit chip die.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 9, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-chul Ji, Ki-nam Kim, Yong-woo Hyung, Kyoung-won Na, Kyoung-ho Ha, Yoon-dong Park, Dae-lok Bae, Jin-kwon Bok, Pil-kyu Kang, Sung-dong Suh, Seong-gu Kim, Dong-jae Shin, In-sung Joe
  • Publication number: 20110096215
    Abstract: An image sensor includes a first substrate including a driving element, a first insulation layer on the first substrate and on the driving element, a second substrate including a photoelectric conversion element, and a second insulation layer on the second substrate and on the photoelectric conversion element. A surface of the second insulation layer is on an upper surface of the first insulation layer. The image sensor includes a conductive connector penetrating the second insulation layer and a portion of the first insulation layer. Methods of forming image sensors are also disclosed.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Sang-Jun Choi, Yoon-Dong Park, Chris Hong, Dae-Lok Bae, Jung-Chak Ahn, Chang-Rok Moon, June-Mo Koo, Suk-Pil Kim, Hoon-Sang Oh
  • Patent number: 7932163
    Abstract: Spaced apart bonding surfaces are formed on a first substrate. A second substrate is bonded to the bonding surfaces of the first substrate and cleaved to leave respective semiconductor regions from the second substrate on respective ones of the spaced apart bonding surfaces of the first substrate. The bonding surfaces may include surfaces of at least one insulating region on the first substrate, and at least one active device may be formed in and/or on at least one of the semiconductor regions. A device isolation region may be formed adjacent the at least one of the semiconductor regions.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: April 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Heun Lim, Chang-Ki Hong, Bo-Un Yoon, Dae-Lok Bae, Seong-Kyu Yun, Suk-Hun Choi
  • Patent number: 7781302
    Abstract: Methods of fabricating a semiconductor device include forming a mask pattern on a semiconductor substrate and which exposes defined regions of the semiconductor substrate. Oxygen ions are implanted into the defined regions of the semiconductor substrate using the mask pattern as an ion implantation mask. The oxygen ion implanted regions of the semiconductor substrate are annealed at one or more temperatures in a range that is sufficiently high to form silicon oxide substantially throughout the oxygen ion implanted regions by reacting the implanted oxygen ions with silicon in the oxygen ion implanted regions, and that is sufficiently low to substantially prevent oxidation of the semiconductor substrate adjacent to the oxygen ion implanted regions.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Won Cha, Dae-Lok Bae
  • Publication number: 20100109164
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages arc also described.
    Type: Application
    Filed: October 27, 2009
    Publication date: May 6, 2010
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Publication number: 20100068868
    Abstract: A wafer temporary bonding method using silicon direct bonding (SDB) may include preparing a carrier wafer and a device wafer, adjusting roughness of a surface of the carrier wafer, and combining the carrier wafer and the device wafer using the SDB. Because the method uses SDB, instead of an adhesive layer, for a temporary bonding process, a module or process to generate and remove an adhesive is unnecessary. Also, a defect in a subsequent process, for example, a back-grinding process, due to irregularity of the adhesive may be prevented.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 18, 2010
    Inventors: Jung-ho Kim, Dae-lok Bae, Jong-wook Lee, Seung-woo Choi, Pil-kyu Kang
  • Patent number: 7605022
    Abstract: A method of fabricating a three-dimensional semiconductor device is provided along with a three-dimensional semiconductor device fabricated thereby. The method includes forming a heat conductive plug to channel heat away from devices on a substrate, while high temperature processes are performed on a stacked semiconductor layer. The ability to use high temperature processes on the stacked semiconductor layer without adversely effecting devices on the substrate allows the formation of a high quality single-crystalline stacked semiconductor layer. The high quality single-crystalline semiconductor layer can then be used to fabricate improved thin film transistors.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: October 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Won Cha, Dong-Chul Suh, Dae-Lok Bae
  • Publication number: 20090221133
    Abstract: Methods of fabricating SOI wafers are provided including providing a donor wafer and forming a hydrogen ion implantation layer in the donor wafer. A circumference portion of one side of the donor wafer is recessed to form a height difference. The one side of the donor wafer and a handle wafer are bonded to form a bonded wafer. The bonded wafer is heat treated to separate the bonded wafer along the hydrogen ion implantation layer.
    Type: Application
    Filed: February 13, 2009
    Publication date: September 3, 2009
    Inventors: Seung-Woo Choi, Dae-Lok Bae, Jong-Wook Lee, Yong-Won Cha, Pil-Kyu Kang, Jung-Ho Kim
  • Publication number: 20080213982
    Abstract: Provided is a method of fabricating a semiconductor wafer. The method includes preparing a substrate wafer having a non-single-crystalline thin layer; disposing at least one single crystalline pattern adjacent to the non-single-crystalline thin layer on the substrate wafer; and forming a material layer contacting the single crystalline pattern on the non-single-crystalline thin layer.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 4, 2008
    Inventors: Young-Soo Park, Young-Sam Lim, Young-Nam Kim, Dae-Lok Bae, Joon-Young Choi, Gi-Jung Kim