Patents by Inventor Dan Gealy

Dan Gealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090273058
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20090257170
    Abstract: Methods for forming ruthenium films and semiconductor devices such as capacitors that include the films are provided.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Inventors: Vishwanath Bhat, Dan Gealy, Vassil Antonov
  • Patent number: 7584942
    Abstract: Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers are disclosed herein. In one embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a carrier gas inlet for flowing carrier gas into the vessel, a conduit having an opening in the precursor and an outlet in the headspace, and a means for flowing precursor through the conduit and into the headspace to increase the surface area of the precursor exposed to the carrier gas.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: September 8, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Dan Gealy, Ronald A. Weimer
  • Patent number: 7560392
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20090155486
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Dan Gealy
  • Patent number: 7390712
    Abstract: Systems, devices, structures, and methods are described that inhibit dielectric degradation at high temperatures. An enhanced capacitor is discussed. The enhanced capacitor includes a first electrode, a dielectric that includes ditantalum pentaoxide, and a second electrode having a compound. The compound includes a first substance and a second substance. The second electrode includes a trace amount of the first substance. The morphology of the semiconductor structure remains stable when the trace amount of the first substance is oxidized during crystallization of the dielectric. In one embodiment, the crystalline structure of the dielectric describes substantially a (001) lattice plane.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: June 24, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Vishnu K. Agarwal, Dan Gealy
  • Patent number: 7311947
    Abstract: A method of forming a film on a substrate includes activating a gas precursor to form a material on the substrate by irradiating the gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: December 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Dan Gealy, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
  • Publication number: 20070264838
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: May 10, 2006
    Publication date: November 15, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20070207588
    Abstract: Systems, devices, structures, and methods are described that inhibit dielectric degradation at high temperatures. An enhanced capacitor is discussed. The enhanced capacitor includes a first electrode, a dielectric that includes ditantalum pentaoxide, and a second electrode having a compound. The compound includes a first substance and a second substance. The second electrode includes a trace amount of the first substance. The morphology of the semiconductor structure remains stable when the trace amount of the first substance is oxidized during crystallization of the dielectric. In one embodiment, the crystalline structure of the dielectric describes substantially a (001) lattice plane.
    Type: Application
    Filed: April 30, 2007
    Publication date: September 6, 2007
    Inventors: Cem Basceri, Vishnu Agarwal, Dan Gealy
  • Patent number: 7241661
    Abstract: A method of forming a coupling dielectric in a memory cell includes forming an oxide on a substrate, forming Ta2O5 on the oxide, oxidizing the Ta2O5 with rapid thermal process (RTP) at a temperature above the crystallization temperature for Ta2O5, forming a cell nitride on the oxidized Ta2O5, and forming a wetgate oxide on the cell nitride.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Dan Gealy, Gurtej Singh Sandhu
  • Patent number: 7232721
    Abstract: Systems, devices, structures, and methods are described that inhibit dielectric degradation at high temperatures. An enhanced capacitor is discussed. The enhanced capacitor includes a first electrode, a dielectric that includes ditantalum pentaoxide, and a second electrode having a compound. The compound includes a first substance and a second substance. The second electrode includes a trace amount of the first substance. The morphology of the semiconductor structure remains stable when the trace amount of the first substance is oxidized during crystallization of the dielectric. In one embodiment, the crystalline structure of the dielectric describes substantially a (001) lattice plane.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 19, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Vishnu K. Agarwal, Dan Gealy
  • Patent number: 7206215
    Abstract: A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film. Embodiments include a method of operating an antifuse, comprising applying a voltage across electrodes of a capacitor having a tantalum oxynitride film and forming a hole in the tantalum oxynitride film.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: April 17, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, Husam N. Al-Shareef, Randhir P. S. Thakur, Dan Gealy
  • Publication number: 20070048953
    Abstract: Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 1, 2007
    Inventors: Dan Gealy, Vishwanath Bhat, Cancheepuram Srividya, M. Rocklein
  • Patent number: 7176079
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: February 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Publication number: 20070020394
    Abstract: CVD, ALD, and other vapor processes used in processing semiconductor workpieces often require volatilizing a liquid or solid precursor. Certain embodiments of the invention provide improved and/or more consistent volatilization rates by moving a reaction vessel. In one exemplary embodiment, a reaction vessel is rotated about a rotation axis which is disposed at an angle with respect to vertical. This deposits a quantity of the reaction precursor on an interior surface of the vessel's sidewall which is exposed to the headspace as the vessel rotates. Other embodiments employ drivers adapted to move the reaction vessel in other manners, such as a pendulum arm to oscillate the vessel along an arcuate path or a mechanical linkage which moves the vessel along an elliptical path.
    Type: Application
    Filed: September 28, 2006
    Publication date: January 25, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Craig Carpenter, Ross Dando, Dan Gealy, Garo Derderian, Allen Mardian
  • Publication number: 20060289969
    Abstract: Electronic devices and systems are provided with material structured from irradiation of a gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor. The frequency of the electromagnetic energy may be selected to impart specific amounts of energy to a gas precursor at a specific frequency that provides point of use activation of the gas precursor.
    Type: Application
    Filed: July 20, 2006
    Publication date: December 28, 2006
    Inventors: Ross Dando, Dan Gealy, Craig Carpenter, Philip Campbell, Allen Mardian
  • Publication number: 20060288937
    Abstract: Apparatus is provided for a method of forming a film on a substrate that includes activating a gas precursor to deposit a material on the substrate by irradiating the gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor. The electromagnetic energy may be provided by an array of lasers. The frequency of the laser beam may be selected by switching from one laser in the array to another laser in the array. The laser array may include laser diodes, one or more tunable lasers, solid state lasers, or gas lasers. The frequency of the electromagnetic energy may be selected to impart specific amounts of energy to a gas precursor at a specific frequency that provides point of use activation of the gas precursor.
    Type: Application
    Filed: July 20, 2006
    Publication date: December 28, 2006
    Inventors: Ross Dando, Dan Gealy, Craig Carpenter, Philip Campbell, Allen Mardian
  • Publication number: 20060246655
    Abstract: A method of forming a coupling dielectric in a memory cell includes forming an oxide on a substrate, forming Ta2O5 on the oxide, oxidizing the Ta2O5 with rapid thermal process (RTP) at a temperature above the crystallization temperature for Ta2O5, forming a cell nitride on the oxidized Ta2O5, and forming a wetgate oxide on the cell nitride.
    Type: Application
    Filed: July 10, 2006
    Publication date: November 2, 2006
    Inventors: Sukesh Sandhu, Dan Gealy, Gurtej Sandhu
  • Patent number: 7118783
    Abstract: CVD, ALD, and other vapor processes used in processing semiconductor workpieces often require volatilizing a liquid or solid precursor. Certain embodiments of the invention provide improved and/or more consistent volatilization rates by moving a reaction vessel. In one exemplary embodiment, a reaction vessel is rotated about a rotation axis which is disposed at an angle with respect to vertical. This deposits a quantity of the reaction precursor on an interior surface of the vessel's sidewall which is exposed to the headspace as the vessel rotates. Other embodiments employ drivers adapted to move the reaction vessel in other manners, such as a pendulum arm to oscillate the vessel along an arcuate path or a mechanical linkage which moves the vessel along an elliptical path.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: October 10, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Dan Gealy, Garo J. Derderian, Allen P. Mardian
  • Publication number: 20060199311
    Abstract: A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film. Embodiments include a method of operating an antifuse, comprising applying a voltage across electrodes of a capacitor having a tantalum oxynitride film and forming a hole in the tantalum oxynitride film.
    Type: Application
    Filed: May 23, 2006
    Publication date: September 7, 2006
    Inventors: Scott DeBoer, Husam Al-Shareef, Randhir Thakur, Dan Gealy