Patents by Inventor Daniel J. W. Brown

Daniel J. W. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7920616
    Abstract: A method/apparatus may comprise a laser light source which may comprise a solid state seed laser system producing a seed laser output having a nominal center wavelength at a pulse repetition rate; a first and a second gas discharge laser amplifier gain medium each operating at a pulse repetition rate less than that of the seed laser system; a beam divider providing each of the respective first and second amplifier gain mediums with seed laser output pulses; a frequency converter modifying the nominal center wavelength of the output of the seed laser to essentially the nominal center wavelength of the amplifier gain medium; a beam combiner combining the outputs of the respective amplifier gain mediums to provide a light source output having the pulse repetition rate of the seed laser; a coherence buster operating on either or both of the output of the seed laser or amplifier gain mediums.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 5, 2011
    Assignee: Cymer, Inc.
    Inventors: Daniel J. W. Brown, William N. Partlo, Richard L. Sandstrom
  • Publication number: 20110069733
    Abstract: A laser includes a regenerative ring resonator that includes a discharge chamber having electrodes and a gain medium between the electrodes for producing a laser beam; a partially-reflective optical coupler, and a beam modification optical system in the path of the laser beam. The beam modification optical system transversely expands a profile of the laser beam such that the near field laser beam profile uniformly fills each aperture within the laser and such that the regenerative ring resonator remains either conditionally stable or marginally unstable when operating the laser at powers that induce thermal lenses in optical elements inside the regenerative ring resonator.
    Type: Application
    Filed: March 16, 2010
    Publication date: March 24, 2011
    Applicant: CYMER INC.
    Inventors: Hong Ye, Richard L. Sandstrom, Slava Rokitski, Daniel J.W. Brown, Robert J. Rafac
  • Patent number: 7885309
    Abstract: A method and apparatus may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser output light beam of pulses, which may comprise a ring power amplification stage.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 8, 2011
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov, Robert A. Bergstedt, Richard L. Sandstrom, Ivan Lalovic
  • Publication number: 20100309939
    Abstract: A method and apparatus are disclosed for controlling bandwidth in a multi-portion laser system comprising a first line narrowed oscillator laser system portion providing a line narrowed seed pulse to an amplifier laser system portion, may comprise utilizing a timing difference curve defining a relationship between a first laser system operating parameter other than bandwidth and the timing difference and also a desired point on the curve defining a desired timing difference, wherein each unique operating point on the curve corresponds to a respective bandwidth value; determining an actual offset from the timing difference at the desired point on the curve to an actual operating point on the curve; determining an error between the actual offset and a desired offset corresponding to a desired bandwidth; modifying the firing differential timing to remove the error between the actual offset and the desired offset.
    Type: Application
    Filed: August 10, 2010
    Publication date: December 9, 2010
    Applicant: Cymer, Inc.
    Inventors: Robert N. Jacques, William N. Partlo, Daniel J. W. Brown
  • Patent number: 7830934
    Abstract: A method and apparatus are disclosed for controlling bandwidth in a multi-portion laser system comprising a first line narrowed oscillator laser system portion providing a line narrowed seed pulse to an amplifier laser system portion, may comprise utilizing a timing difference curve defining a relationship between a first laser system operating parameter other than bandwidth and the timing difference and also a desired point on the curve defining a desired timing difference, wherein each unique operating point on the curve corresponds to a respective bandwidth value; determining an actual offset from the timing difference at the desired point on the curve to an actual operating point on the curve; determining an error between the actual offset and a desired offset corresponding to a desired bandwidth; modifying the firing differential timing to remove the error between the actual offset and the desired offset.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 9, 2010
    Assignee: Cymer, Inc.
    Inventors: Robert N. Jacques, William N. Partlo, Daniel J. W. Brown
  • Patent number: 7822092
    Abstract: A method and apparatus may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser output light beam of pulses, which may comprise a ring power amplification stage.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 26, 2010
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov, Robert A. Bergstedt
  • Patent number: 7778302
    Abstract: A method/apparatus may comprise a seed laser oscillator producing an output which may comprise: a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage receiving the output of the seed laser oscillator which may comprise: a ring power amplification stage; a coherence busting mechanism intermediate the seed laser oscillator and the ring power amplification stage which may comprise a beam splitter separating the seed laser output into a main beam and a beam entering an optical delay path which may have a delay length longer than the coherence length of a pulse in the seed laser output and may have a beam angular offset mechanism offsetting a delayed beam and the main beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 17, 2010
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov, Robert A. Bergstedt
  • Patent number: 7746913
    Abstract: An apparatus/method which may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a seed laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser system output light beam of pulses, which may comprise a ring power amplification stage; a seed injection mechanism.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 29, 2010
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov, Robert A. Bergstedt
  • Publication number: 20100142582
    Abstract: One aspect of the disclosed subject matter describes a gas discharge laser chamber. The gas discharge laser chamber includes a discharge region formed between a first electrode and a second electrode, a tangential fan for circulating gas through the discharge region, wherein the fan is proximate to an input side of the discharge region, an input side acoustic baffle proximate to the input side of the discharge region. The input side acoustic baffle includes a vanishing point leading edge, a vanishing point trailing edge, a gas flow smoothing offset surface aligning a gas flow from a surface of the input side acoustic baffle to an input side of a cathode support in the discharge region, a plurality of ridges separated by a plurality of trenches, wherein the plurality of ridges and the plurality of trenches are aligned with a direction of gas flow through the discharge region and wherein the plurality of ridges have a random pitch between about 0.3 and about 0.7 inch.
    Type: Application
    Filed: October 21, 2009
    Publication date: June 10, 2010
    Inventors: Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Bryan G. Moosman, Tae H. Chung, Thomas P. Duffey, James J. Ferrell, Terance Hilsabeck
  • Patent number: 7715459
    Abstract: An apparatus/method which may comprise: a very high power line narrowed lithography laser light source which may comprise: a solid state seed laser system which may comprise: a pre-seed laser providing a pre-seed laser output; a fiber amplifier receiving the pre-seed laser output and providing an amplified seed laser pulse which may comprise: a pulse having a nominal wavelength outside of the DUV range; a frequency converter converting to essentially the wavelength of the amplifier gain medium; a first and a second gas discharge laser amplifier gain medium operating at different repetition rates from that of the seed laser output; a beam divider providing the amplifier gain mediums with output pulses from the seed laser; a beam combiner combining the outputs of each respective amplifier gain medium to provide a laser output light pulse beam having the pulse repetition rate of the solid state seed laser system.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 11, 2010
    Assignee: Cymer, Inc.
    Inventors: Daniel J. W. Brown, William N. Partlo, Richard L. Sandstrom
  • Publication number: 20100108913
    Abstract: A method and apparatus may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser output light beam of pulses, which may comprise a ring power amplification stage.
    Type: Application
    Filed: April 13, 2007
    Publication date: May 6, 2010
    Applicant: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov, Robert A. Bergstedt, Richard L. Sandstrom, Ivan Lalovic
  • Publication number: 20100074295
    Abstract: An apparatus and method are disclosed which may comprise a pulsed gas discharge laser lithography light source which may comprise a seed laser portion providing a seed laser output light beam of seed pulses; an amplifier portion receiving the seed laser output light beam and amplifying the optical intensity of each seed pulse to provide a high power laser system output light beam of output pulses; the amplifier portion may comprise a ring power amplifier comprising amplifier portion injection optics comprising at least one beam expanding prism, a beam reverser and an input/output coupler; the beam expansion optics and the output coupler may be mounted on an optics assembly with the beam expansion optics rigidly mounted with respect to the optics assembly and the input/output coupler mounted for relative movement with respect to the optics assembly for optical alignment purposes.
    Type: Application
    Filed: November 20, 2009
    Publication date: March 25, 2010
    Applicant: Cymer, Inc.
    Inventors: William N. Partlo, Alexander I. Ershov, German Rylov, Igor V. Fomenkov, Daniel J.W. Brown, Christian J. Wittak, Rajasekhar M. Rao, Robert A. Bergstedt, John Fitzgerald, Richard L. Sandstrom, Vladimir B. Fleurov, Robert N. Jacques, Ed Danielewicz, Robin Swain, Edmond Arriola, Mike Wyatt, Walter Crosby
  • Patent number: 7643529
    Abstract: An apparatus/method may comprise a line narrowed pulsed lithography laser light source which may comprise: a seed pulse providing laser system which may comprise: a first pulsed seed laser producing seed pulses at a rate of X kHz; a second pulsed seed laser producing seed pulses at a rate of X kHz; an amplification system which may comprise: a first amplifier gain system which may comprise a first and a second pulsed gas discharge amplifier gain medium, each with a nominal center wavelength in the UV range, and each operating at ½ X kHz on output pulses from the first seed laser; a second amplifier gain system which may comprise a first and a second pulsed amplifier gain medium, each with a nominal center wavelength in the UV range, and each operating at ½ X kHz on output pulses from the second seed laser.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 5, 2010
    Assignee: Cymer, Inc.
    Inventors: Daniel J. W. Brown, William N. Partlo, Richard L. Sandstrom
  • Patent number: 7643528
    Abstract: An apparatus and method which may comprise a pulsed gas discharge laser which may comprise a seed laser portion; an amplifier portion receiving the seed laser output and amplifying the optical intensity of each seed pulse; a pulse stretcher which may comprise: a first beam splitter operatively connected with the first delay path and a second pulse stretcher operatively connected with the second delay path; a first optical delay path tower containing the first beam splitter; a second optical delay path tower containing the second beam splitter; one of the first and second optical delay paths may comprise: a plurality of mirrors defining the respective optical delay path including mirrors located in the first tower and in the second tower; the other of the first and second optical delay paths may comprise: a plurality of mirrors defining the respective optical delay path including mirrors only in one of the first tower and the second tower.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: January 5, 2010
    Assignee: Cymer, Inc.
    Inventors: William N. Partlo, Alexander I. Ershov, German Rylov, Igor V. Fomenkov, Daniel J. W. Brown, Christian J. Wittak, Rajasekhar M. Rao, Robert A. Bergstedt, John Fitzgerald, Richard L. Sandstrom, Vladimir B. Fleurov, Robert N. Jacques, Ed Danielewicz, Robin Swain, Edward Arriola, Michael Wyatt, Walter Crosby
  • Patent number: 7630424
    Abstract: A method/apparatus may comprise operating a line narrowed pulsed excimer or molecular fluorine gas discharge laser system by using a seed laser oscillator to produce an output which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module; a laser amplification stage which may comprise a ring power amplification stage; the method of operation may the steps of: selecting a differential timing between an electrical discharge between a pair of electrodes in the first laser chamber and in the second laser chamber which at the same time keeps ASE below a selected limit and the pulse energy of the laser system output light beam of pulses essentially constant.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 8, 2009
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov
  • Publication number: 20090296758
    Abstract: An apparatus/method may comprise a line narrowed pulsed lithography laser light source which may comprise: a seed pulse providing laser system which may comprise: a first pulsed seed laser producing seed pulses at a rate of X kHz; a second pulsed seed laser producing seed pulses at a rate of X kHz; an amplification system which may comprise: a first amplifier gain system which may comprise a first and a second pulsed gas discharge amplifier gain medium, each with a nominal center wavelength in the UV range, and each operating at ½ X kHz on output pulses from the first seed laser; a second amplifier gain system which may comprise a first and a second pulsed amplifier gain medium, each with a nominal center wavelength in the UV range, and each operating at ½ X kHz on output pulses from the second seed laser.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 3, 2009
    Applicant: Cymer, Inc.
    Inventors: Daniel J.W. Brown, William N. Partlo, Richard L. Sandstrom
  • Publication number: 20090296755
    Abstract: A method and apparatus may comprise a laser light source system which may comprise a solid state laser seed beam source providing a seed laser output; a frequency conversion stage converting the seed laser output to a wavelength suitable for seeding an excimer or molecular fluorine gas discharge laser; an excimer or molecular fluorine gas discharge laser gain medium amplifying the converted seed laser output to produce a gas discharge laser output at approximately the converted wavelength. The excimer or molecular fluorine laser may be selected from a group comprising XeCl, XeF, KrF, ArF and F2 laser systems. The laser gain medium may comprise a power amplifier. The power amplifier may comprise a single pass amplifier stage, a multiple-pass amplifier stage, a ring power amplification stage or a power oscillator. The ring power amplification stage may comprise a bow-tie configuration or a race track configuration.
    Type: Application
    Filed: October 30, 2007
    Publication date: December 3, 2009
    Applicant: Cymer, Inc.
    Inventors: Daniel J. W. Brown, William N. Partlo, Richard L. Sandstrom
  • Patent number: 7567607
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: July 28, 2009
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scot T. Smith, William G. Hulburd, Jeffrey Oicles
  • Publication number: 20090122825
    Abstract: A method/apparatus may comprise a seed laser oscillator producing an output which may comprise: a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage receiving the output of the seed laser oscillator which may comprise: a ring power amplification stage; a coherence busting mechanism intermediate the seed laser oscillator and the ring power amplification stage which may comprise a beam splitter separating the seed laser output into a main beam and a beam entering an optical delay path which may have a delay length longer than the coherence length of a pulse in the seed laser output and may have a beam angular offset mechanism offsetting a delayed beam and the main beam.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 14, 2009
    Applicant: Cymer, Inc.
    Inventors: Alexander I. Ershov, William N. Partlo, Daniel J.W. Brown, Igor V. Fomenkov, Robert A. Bergstedt
  • Publication number: 20090116530
    Abstract: An apparatus and method of operation for a high power broad band elongated thin beam laser annealing light source, which may comprise a gas discharge seed laser oscillator having a resonance cavity, providing a seed laser output pulse; a gas discharge amplifier laser amplifying the seed laser output pulse to provide an amplified seed laser pulse output; a divergence correcting multi-optical element optical assembly intermediate the seed laser and the amplifier laser. The divergence correcting optical assembly may adjust the size and/or shape of the seed laser output pulse within a discharge region of the amplifier laser in order to adjust an output parameter of the amplified seed laser pulse output. The divergence correcting optical assembly may comprise a telescope with an adjustable focus. The adjustable telescope may comprise an active feedback-controlled actuator based upon a sensed parameter of the amplified seed laser output from the amplifier laser.
    Type: Application
    Filed: September 17, 2008
    Publication date: May 7, 2009
    Applicant: CYMER, INC.
    Inventors: Richard L. Sandstrom, Daniel J. W. Brown, Thomas Hofmann, Jason D. Robinson, Craig W. Unick