Patents by Inventor Daniel R. Cohn

Daniel R. Cohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220130567
    Abstract: Embodiments disclosed herein include methods and systems for melting or augmenting a melt rate of material in a melter using electromagnetic radiation with a frequency between 0.9 GHz and 10 GHz. In some examples, a power and/or frequency of radiation used may be selected so as to control a temperature of a cold cap in the melter while maintaining emissions from the melter below a threshold level. In this manner, examples described herein may provide for efficient and safe melting and vitrification of radioactive wastes.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Applicant: InEnTec Inc.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma
  • Patent number: 11255276
    Abstract: Spark ignition engine operation at higher RPM so as to reduce alcohol requirements in high efficiency alcohol enhanced gasoline engines is disclosed. Control of engine upspeeding (use of a higher ratio of engine RPM to wheel RPM) so as to achieve an alcohol reduction objective while limiting any decrease in efficiency is described. High RPM alcohol enhanced gasoline engine operation in plug-in series hybrid powertrains for heavy duty trucks and other vehicles is also described.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: February 22, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 11254876
    Abstract: Embodiments include a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 22, 2022
    Assignee: InEnTec Inc.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Publication number: 20220034272
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: October 13, 2021
    Publication date: February 3, 2022
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 11232879
    Abstract: Methods and systems for melting or augmenting a melt rate of material in a melter using electromagnetic radiation with a frequency between 0.9 GHz and 10 GHz. In some examples, a power and/or frequency of radiation used may be selected so as to control a temperature of a cold cap in the melter while maintaining emissions from the melter below a threshold level. In this manner, examples described herein may provide for efficient and safe melting and vitrification of radioactive wastes.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: January 25, 2022
    Assignee: InEnTec Inc.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma
  • Publication number: 20210363927
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 11168625
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: November 9, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20210293191
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 11125171
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: September 21, 2021
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20210254568
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 11067012
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: July 20, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20210207037
    Abstract: The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Applicant: InEnTec Inc.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Patent number: 11053870
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 6, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 11053869
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: July 6, 2021
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20210131367
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20210131337
    Abstract: Optimized alcohol and plasma enhanced prechambers for engines powered by gasoline and other fuels are used to increase the range of prechamber operation and to reduce soot. The increased prechamber capability is employed to extend the limit of lean operation of the engines. It can also be used to extend the limit of heavy EGR operation and to enable higher RPM operation. The amount of alcohol used in the prechamber is preferably less than 2% of the fuel that is used in the engine cylinder. The alcohol for the prechamber can be entirely provided by onboard separation from a gasoline-alcohol fuel mixture.
    Type: Application
    Filed: August 21, 2018
    Publication date: May 6, 2021
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Patent number: 10954449
    Abstract: The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 23, 2021
    Assignee: INENTEC, INC.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Publication number: 20210003084
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20200370483
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20200362775
    Abstract: Spark ignition engine operation at higher RPM so as to reduce alcohol requirements in high efficiency alcohol enhanced gasoline engines is disclosed. Control of engine upspeeding (use of a higher ratio of engine RPM to wheel RPM) so as to achieve an alcohol reduction objective while limiting any decrease in efficiency is described. High RPM alcohol enhanced gasoline engine operation in plug-in series hybrid powertrains for heavy duty trucks and other vehicles is also described.
    Type: Application
    Filed: September 24, 2018
    Publication date: November 19, 2020
    Inventors: Daniel R. Cohn, Leslie Bromberg