Patents by Inventor Daniel R. Cohn

Daniel R. Cohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160319764
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9469533
    Abstract: A method for converting renewable energy source-electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable-electrical energy in communication with a synthesis gas generation unit and an air separation-unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the-synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas-generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: October 18, 2016
    Assignee: INENTEC INC.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Patent number: 9441570
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 13, 2016
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9435288
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 6, 2016
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9422490
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process. The apparatus can also be used to reduce the heating requirement for the thermal residence chamber (TRC) used downstream from the gasification system.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 23, 2016
    Assignee: INENTEC INC.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Patent number: 9353678
    Abstract: Reformer-enhanced alcohol engine system. The engine system includes a spark-ignited alcohol engine having a compression ratio in the range of 13-15 and includes a turbocharger or supercharger operatively connected to the engine to provide a pressure boost of at least about 2.5 times atmospheric pressure to cylinders of the engine. A source of alcohol is provided for injection into the engine. A reformer is provided including a low-temperature reforming catalyst in a heat transfer relation with exhaust gas from the engine and arranged to receive alcohol from the alcohol source for reforming the alcohol into a hydrogen-rich gas. Means are provided for injecting the hydrogen-rich gas into the engine and a knock sensor detects knock in the engine. A fuel management control unit is provided which is responsive to the knock sensor to apportion the ratio of alcohol injected into the engine to hydrogen-rich gas injected into the engine.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: May 31, 2016
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20160138529
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 19, 2016
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Patent number: 9273618
    Abstract: A number of systems and methods are disclosed which increase the replenishment interval for anti-knock fluid. This is especially important during activities which require a large amount of anti-knock fluid, such as towing. In some embodiments, the systems and methods are used to reduce anti-knock fluid consumption. For example, changes to engine operation, such as rich operation, spark retarding, upspeeding, and variable valve timing, all serve to reduce the amount of anti-knock fluid required to eliminate knocking. In other embodiments, the composition of the anti-knock fluid is modified, such as by using a higher octane fluid, or through the addition of water to the anti-knock fluid. In other embodiments, the replenishment interval is increased through a larger anti-knock fluid storage capacity. In one embodiment, a three tank system is used where the third tank can be used to store gasoline or anti-knock fluid, depending on the driving conditions.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: March 1, 2016
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Patent number: 9255519
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: February 9, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20160017794
    Abstract: A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5<?<4.0. In doing so, it creates an exothermic reaction, which results in the production of syngas. In addition, the system utilizes the energy from the exothermic reaction to rotate a shaft and also utilizes the heat in the syngas to heat the reactants. A mechanical power plant is in communication with the rotating shaft and can be used to produce oxygen, provide electricity or operate a compressor, as require. The hydrogen-rich gas is supplied to a chemical reactor, which converts the gas into a liquid fuel, such as methanol.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventors: Leslie Bromberg, William H. Green, Alexander Sappok, Daniel R. Cohn, Amrit Jalan
  • Patent number: 9234482
    Abstract: Engine system using alcohol Rankine heat recovery where the engine heat converts alcohol into hydrogen-rich gas which is then introduced into the engine cylinders. The engine system includes a source of liquid alcohol along with an internal combustion engine generating a high temperature exhaust. Structure is provided for introducing a first portion of the liquid alcohol into the engine and a series of heat exchangers forming a Rankine heat recovery cycle is provided to extract heat from the exhaust and transferring the heat to a second portion of the liquid alcohol, causing it to change phase to a gaseous alcohol. A heat exchanger/catalyst is heated by the exhaust to reform the gaseous alcohol into a hydrogen-rich reformate.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: January 12, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20150369117
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: July 23, 2015
    Publication date: December 24, 2015
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20150369162
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9206761
    Abstract: An engine having two or more fuel injectors is disclosed, where at least one of the injectors is used to port fuel inject fuel into the cylinder when the air intake valve is open. The open valve port fuel injector is used to inject a fuel that has alcohol as a constituent and is the same fuel injected by another fuel injector. In other embodiments, the open valve fuel injector is used to inject an anti-knock fuel containing alcohol while a primary fuel, is introduced by another injector. The operation of the open valve fuel injector can be optimized to maximize the vaporization cooling. In other embodiments, the open valve fuel injector may be used in conjunction with direct injection of the primary fuel or the anti-knock fuel. Heavy EGR can be optimally used with the various embodiments.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: December 8, 2015
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9169773
    Abstract: A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5<?<4.0. In doing so, it creates an exothermic reaction, which results in the production of syngas. In addition, the system utilizes the energy from the exothermic reaction to rotate a shaft and also utilizes the heat in the syngas to heat the reactants. A mechanical power plant is in communication with the rotating shaft and can be used to produce oxygen, provide electricity or operate a compressor, as require. The hydrogen-rich gas is supplied to a chemical reactor, which converts the gas into a liquid fuel, such as methanol.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 27, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, William H. Green, Alexander Sappok, Daniel R. Cohn, Amrit Jalan
  • Publication number: 20150285179
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Application
    Filed: December 5, 2013
    Publication date: October 8, 2015
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9109498
    Abstract: An engine having DME pilot ignition is disclosed. DME Pilot ignition creates far more energy than a conventional spark plug, thus minimizes the possibility of misfire in the engine map. DME injection can be used in a number of ways. In one embodiment, DME injection replaces the conventional spark plug in an Otto cycle engine. In another embodiment, DME injection is used in addition to spark ignition to minimize the use of DME. In this embodiment, DME injection is only used during those portions of the engine map where misfire may occur, or during those times when a misfire sensor detects misfire. DME injection can also be used in conjunction with alcohol boosting in other embodiments.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: August 18, 2015
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: John M. Bradley, Leslie Bromberg, Daniel R. Cohn
  • Patent number: 9057032
    Abstract: The problems of the prior art are overcome by the apparatus and method disclosed herein. The reactor vessel of a plasma gasifier is operated at high pressure. To compensate for the negative effects of high pressure, various modifications to the plasma gasifier are disclosed. For example, by moving the slag, more material is exposed to the plasma, allowing better and more complete processing thereof. In some embodiments, magnetic fields are used to cause movement of the slag and molten metal within the vessel. An additional embodiment is to add microwave heating of the slag and/or the incoming material. Microwave heating can also be used as an alternative to plasma heating in a high pressure gasification system.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 16, 2015
    Assignee: InEnTec Inc.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Publication number: 20150128901
    Abstract: An engine having two or more fuel injectors is disclosed, where at least one of the injectors is used to port fuel inject fuel into the cylinder when the air intake valve is open. The open valve port fuel injector is used to inject a fuel that has alcohol as a constituent and is the same fuel injected by another fuel injector. In other embodiments, the open valve fuel injector is used to inject an anti-knock fuel containing alcohol while a primary fuel, is introduced by another injector. The operation of the open valve fuel injector can be optimized to maximize the vaporization cooling. In other embodiments, the open valve fuel injector may be used in conjunction with direct injection of the primary fuel or the anti-knock fuel. Heavy EGR can be optimally used with the various embodiments.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 14, 2015
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 8997711
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood