Patents by Inventor Daniel R. Cohn

Daniel R. Cohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150046069
    Abstract: A number of systems and methods are disclosed which increase the replenishment interval for anti-knock fluid. This is especially important during activities which require a large amount of anti-knock fluid, such as towing. In some embodiments, the systems and methods are used to reduce anti-knock fluid consumption. For example, changes to engine operation, such as rich operation, spark retarding, upspeeding, and variable valve timing, all serve to reduce the amount of anti-knock fluid required to eliminate knocking. In other embodiments, the composition of the anti-knock fluid is modified, such as by using a higher octane fluid, or through the addition of water to the anti-knock fluid. In other embodiments, the replenishment interval is increased through a larger anti-knock fluid storage capacity. In one embodiment, a three tank system is used where the third tank can be used to store gasoline or anti-knock fluid, depending on the driving conditions.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Patent number: 8919330
    Abstract: A number of systems and methods are disclosed which increase the replenishment interval for anti-knock fluid. This is especially important during activities which require a large amount of anti-knock fluid, such as towing. In some embodiments, the systems and methods are used to reduce anti-knock fluid consumption. For example, changes to engine operation, such as rich operation, spark retarding, upspeeding, and variable valve timing, all serve to reduce the amount of anti-knock fluid required to eliminate knocking. In other embodiments, the composition of the anti-knock fluid is modified, such as by using a higher octane fluid, or through the addition of water to the anti-knock fluid. In other embodiments, the replenishment interval is increased through a larger anti-knock fluid storage capacity. In one embodiment, a three tank system is used where the third tank can be used to store gasoline or anti-knock fluid, depending on the driving conditions.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: December 30, 2014
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20140373811
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can he used to increase the efficiency or the engine.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20140343825
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Application
    Filed: December 19, 2013
    Publication date: November 20, 2014
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20140325839
    Abstract: An engine having DME pilot ignition is disclosed. DME Pilot ignition creates far more energy than a conventional spark plug, thus minimizes the possibility of misfire in the engine map. DME injection can be used in a number of ways. In one embodiment, DME injection replaces the conventional spark plug in an Otto cycle engine. In another embodiment, DME injection is used in addition to spark ignition to minimize the use of DME. In this embodiment, DME injection is only used during those portions of the engine map where misfire may occur, or during those times when a misfire sensor detects misfire. DME injection can also be used in conjunction with alcohol boosting in other embodiments.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: John M. Bradley, Leslie Bromberg, Daniel R. Cohn
  • Patent number: 8857410
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: October 14, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20140290596
    Abstract: Reformer-enhanced alcohol engine system. The engine system includes a spark-ignited alcohol engine having a compression ratio in the range of 13-15 and includes a turbocharger or supercharger operatively connected to the engine to provide a pressure boost of at least about 2.5 times atmospheric pressure to cylinders of the engine. A source of alcohol is provided for injection into the engine. A reformer is provided including a low-temperature reforming catalyst in a heat transfer relation with exhaust gas from the engine and arranged to receive alcohol from the alcohol source for reforming the alcohol into a hydrogen-rich gas. Means are provided for injecting the hydrogen-rich gas into the engine and a knock sensor detects knock in the engine. A fuel management control unit is provided which is responsive to the knock sensor to apportion the ratio of alcohol injected into the engine to hydrogen-rich gas injected into the engine.
    Type: Application
    Filed: October 9, 2012
    Publication date: October 2, 2014
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20140261345
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 18, 2014
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20140216395
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20140222319
    Abstract: A number of systems and methods are disclosed which increase the replenishment interval for anti-knock fluid. This is especially important during activities which require a large amount of anti-knock fluid, such as towing. In some embodiments, the systems and methods are used to reduce anti-knock fluid consumption. For example, changes to engine operation, such as rich operation, spark retarding, upspeeding, and variable valve timing, all serve to reduce the amount of anti-knock fluid required to eliminate knocking. In other embodiments, the composition of the anti-knock fluid is modified, such as by using a higher octane fluid, or through the addition of water to the anti-knock fluid. In other embodiments, the replenishment interval is increased through a larger anti-knock fluid storage capacity. In one embodiment, a three tank system is used where the third tank can be used to store gasoline or anti-knock fluid, depending on the driving conditions.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Applicant: Ethanol Boosting Systems, LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20140182205
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process. The apparatus can also be used to reduce the heating requirement for the thermal residence chamber (TRC) used downstream from the gasification system.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: INENTEC INC.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Publication number: 20140145107
    Abstract: Heat exchanger. Metallic foam is disposed on at least one fin made of high thermal conductivity material. The metallic foam exchanges heat with a gas stream flowing therethrough.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 29, 2014
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Patent number: 8733321
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 27, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Patent number: 8707913
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: April 29, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Patent number: 8707938
    Abstract: A number of systems and methods are disclosed which increase the replenishment interval for anti-knock fluid. This is especially important during activities which require a large amount of anti-knock fluid, such as towing. In some embodiments, the systems and methods are used to reduce anti-knock fluid consumption. For example, changes to engine operation, such as rich operation, spark retarding, upspeeding, and variable valve timing, all serve to reduce the amount of anti-knock fluid required to eliminate knocking. In other embodiments, the composition of the anti-knock fluid is modified, such as by using a higher octane fluid, or through the addition of water to the anti-knock fluid. In other embodiments, the replenishment interval is increased through a larger anti-knock fluid storage capacity. In one embodiment, a three tank system is used where the third tank can be used to store gasoline or anti-knock fluid, depending on the driving conditions.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 29, 2014
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20140100294
    Abstract: The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Application
    Filed: November 11, 2013
    Publication date: April 10, 2014
    Applicant: INENTEC INC.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Patent number: 8677949
    Abstract: Turbocharged or supercharged spark ignition engine. The engine includes a source of methanol for direct injection of methanol into the engine and for delivering a portion of the methanol to a reformer for generating a hydrogen-rich gas.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: March 25, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20140034002
    Abstract: Engine system using alcohol Rankine heat recovery where the engine heat converts alcohol into hydrogen-rich gas which is then introduced into the engine cylinders. The engine system includes a source of liquid alcohol along with an internal combustion engine generating a high-temperature exhaust. Structure is provided for introducing a first portion of the liquid alcohol into the engine and a series of heat exchangers forming a Rankine heat recovery cycle is provided to extract heat from the exhaust and transferring the heat to a second portion of the liquid alcohol, causing it to change phase to a gaseous alcohol. A heat exchanger/catalyst is heated by the exhaust to reform the gaseous alcohol into a hydrogen-rich reformate.
    Type: Application
    Filed: July 29, 2013
    Publication date: February 6, 2014
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Patent number: 8614364
    Abstract: A method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit is described. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 24, 2013
    Assignee: Inentec Inc.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Patent number: 8613782
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process. The apparatus can also be used to reduce the heating requirement for the thermal residence chamber (TRC) used downstream from the gasification system.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 24, 2013
    Assignee: Inentec Inc.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar